Klein Florencia, Sardi Florencia, Machado Matías R, Ortega Claudia, Comini Marcelo A, Pantano Sergio
BioMolecular Simulation Group, Institut Pasteur de Montevideo, Montevideo, Uruguay.
Graduate Program in Chemistry, Facultad de Química, Universidad de La República, Montevideo, Uruguay.
Front Mol Biosci. 2021 Mar 11;8:629773. doi: 10.3389/fmolb.2021.629773. eCollection 2021.
The detection of small molecules in living cells using genetically encoded FRET sensors has revolutionized our understanding of signaling pathways at the sub-cellular level. However, engineering fluorescent proteins and specific binding domains to create new sensors remains challenging because of the difficulties associated with the large size of the polypeptides involved, and their intrinsically huge conformational variability. Indeed, FRET sensors' design still relies on vague structural notions, and trial and error combinations of linkers and protein modules. We recently designed a FRET sensor for the second messenger cAMP named CUTie (yclic nucleotide Universal ag for maging xperiments), which granted sub-micrometer resolution in living cells. Here we apply a combination of sequence/structure analysis to produce a new-generation FRET sensor for the second messenger cGMP based on Protein kinase G I (PKGI), which we named CUTie2. Coarse-grained molecular dynamics simulations achieved an exhaustive sampling of the relevant spatio-temporal coordinates providing a quasi-quantitative prediction of the FRET efficiency, as confirmed by experiments. Moreover, biochemical characterization showed that the cGMP binding module maintains virtually the same affinity and selectivity for its ligand thant the full-length protein. The computational approach proposed here is easily generalizable to other allosteric protein modules, providing a cost effective-strategy for the custom design of FRET sensors.
利用基因编码的荧光共振能量转移(FRET)传感器检测活细胞中的小分子,彻底改变了我们在亚细胞水平上对信号通路的理解。然而,由于涉及的多肽体积大以及其固有的巨大构象变异性,工程化荧光蛋白和特定结合域以创建新传感器仍然具有挑战性。实际上,FRET传感器的设计仍然依赖于模糊的结构概念以及接头和蛋白质模块的反复试验组合。我们最近设计了一种用于第二信使环磷酸腺苷(cAMP)的FRET传感器,名为CUTie(用于成像实验的环核苷酸通用传感器),它在活细胞中实现了亚微米分辨率。在此,我们应用序列/结构分析相结合的方法,基于蛋白激酶G I(PKGI)生产了一种用于第二信使环磷酸鸟苷(cGMP)的新一代FRET传感器,我们将其命名为CUTie2。粗粒度分子动力学模拟对相关时空坐标进行了详尽采样,提供了FRET效率的准定量预测,实验结果证实了这一点。此外,生化特性表明,cGMP结合模块对其配体的亲和力和选择性与全长蛋白几乎相同。这里提出的计算方法很容易推广到其他变构蛋白模块,为FRET传感器的定制设计提供了一种经济有效的策略。