Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
Department of Surgery C, Chaim Sheba Medical Center, Tel Hashomer, Israel.
Minim Invasive Ther Allied Technol. 2022 Jun;31(5):760-767. doi: 10.1080/13645706.2021.1901120. Epub 2021 Mar 28.
Bariatric patients have a high prevalence of hiatal hernia (HH). HH imposes various difficulties in performing laparoscopic bariatric surgery. Preoperative evaluation is generally inaccurate, establishing the need for better preoperative assessment.
To utilize machine learning ability to improve preoperative diagnosis of HH.
Machine learning (ML) prediction models were utilized to predict preoperative HH diagnosis using data from a prospectively maintained database of bariatric procedures performed in a high-volume bariatric surgical center between 2012 and 2015. We utilized three optional ML models to improve preoperative contrast swallow study (SS) prediction, automatic feature selection was performed using patients' features. The prediction efficacy of the models was compared to SS.
During the study period, 2482 patients underwent bariatric surgery. All underwent preoperative SS, considered the baseline diagnostic modality, which identified 236 (9.5%) patients with presumed HH. Achieving 38.5% sensitivity and 92.9% specificity. ML models increased sensitivity up to 60.2%, creating three optional models utilizing data and patient selection process for this purpose.
Implementing machine learning derived prediction models enabled an increase of up to 1.5 times of the baseline diagnostic sensitivity. By harnessing this ability, we can improve traditional medical diagnosis, increasing the sensitivity of preoperative diagnostic workout.
肥胖症患者中膈疝(HH)的发病率很高。HH 在进行腹腔镜减重手术时会带来各种困难。术前评估通常不够准确,因此需要更好的术前评估。
利用机器学习能力提高 HH 的术前诊断。
使用 2012 年至 2015 年间在一家大容量减重外科中心进行的前瞻性维持数据库中的数据,利用机器学习(ML)预测模型来预测 HH 的术前诊断。我们使用了三种可选的 ML 模型来改进术前对比吞咽研究(SS)预测,使用患者的特征进行自动特征选择。将模型的预测效果与 SS 进行比较。
在研究期间,2482 名患者接受了减重手术。所有患者均接受了术前 SS,作为基线诊断方法,其中有 236 名(9.5%)患者被诊断为 HH。SS 的诊断敏感度为 38.5%,特异度为 92.9%。ML 模型的敏感度提高至 60.2%,创建了三个可选模型,用于此目的的数据和患者选择过程。
实施基于机器学习的预测模型可将基线诊断的敏感度提高至 1.5 倍。通过利用这种能力,我们可以改进传统的医学诊断,提高术前诊断的敏感性。