The Committee on Neurobiology Graduate Program, The University of Chicago, Chicago, IL 60637, USA.
Department of Neurobiology and the Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA.
Sci Adv. 2024 Sep 20;10(38):eadp5229. doi: 10.1126/sciadv.adp5229.
Changes in synaptic strength across timescales are integral to algorithmic operations of neural circuits. However, pinpointing synaptic loci that undergo plasticity in intact brain circuits and delineating contributions of synaptic plasticity to circuit function remain challenging. The whole-mount retina preparation provides an accessible platform for measuring plasticity at specific synapses while monitoring circuit-level behaviors during visual processing ex vivo. In this review, we discuss insights gained from retina studies into the versatile roles of short-term synaptic plasticity in context-dependent circuit functions. Plasticity at single synapse level greatly expands the algorithms of common microcircuit motifs and contributes to diverse circuit-level behaviors such as gain modulation, selective gating, and stimulus-dependent excitatory/inhibitory balance. Examples in retinal circuitry offer unequivocal support that synaptic plasticity increases the computational capacity of hardwired neural circuitry.
跨时间尺度的突触强度变化是神经回路算法操作的基础。然而,在完整的大脑回路中精确定位经历可塑性的突触位置,并阐明突触可塑性对回路功能的贡献仍然具有挑战性。全视网膜铺片制备为在特定突触处测量可塑性提供了一个可接近的平台,同时在体外视觉处理过程中监测回路水平的行为。在这篇综述中,我们讨论了从视网膜研究中获得的关于短期突触可塑性在上下文相关的回路功能中的多功能作用的见解。单个突触水平的可塑性极大地扩展了常见微回路基元的算法,并有助于多种回路水平的行为,如增益调制、选择性门控和刺激依赖性兴奋/抑制平衡。视网膜回路中的例子无可置疑地支持了突触可塑性增加了固定布线神经回路的计算能力。