Suppr超能文献

生物信息学与整合分析确定了胃腺癌中的一种长链非编码RNA-微小RNA-信使核糖核酸相互作用机制。

Bioinformatic and integrated analysis identifies an lncRNA-miRNA-mRNA interaction mechanism in gastric adenocarcinoma.

作者信息

Liao Yong, Cao Wen, Zhang Kunpeng, Zhou Yang, Xu Xin, Zhao Xiaoling, Yang Xu, Wang Jitao, Zhao Shouwen, Zhang Shiyu, Yang Longfei, Liu Dengxiang, Tian Yanpeng, Wu Weizhong

机构信息

Department of Hepatobiliary Surgery, Xingtai People's Hospital of Hebei Medical University, Xingtai, 054001, Hebei, People's Republic of China.

Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China.

出版信息

Genes Genomics. 2021 Jun;43(6):613-622. doi: 10.1007/s13258-021-01086-z. Epub 2021 Mar 29.

Abstract

BACKGROUND

lncRNAs-miRNAs-mRNAs networks play an important role in Gastric adenocarcinoma (GA). Identification of these networks provide new insight into the role of these RNAs in gastric cancer.

OBJECTIVES

Biological information databases were screened to characterize and examine the regulatory networks and to further investigate the potential prognostic relationship this regulation has in GA.

METHODS

By mining The Cancer Genome Atlas (TCGA) database, we gathered information on GA-related lncRNAs, miRNAs, and mRNAs. We identified differentially expressed (DE) lncRNAs, miRNAs, and mRNAs using R software. The lncRNA-miRNA-mRNA interaction network was constructed and subsequent survival examination was performed. Representative genes were selected out using The Biological Networks Gene Ontology plug-in tool on Cytoscape. Additional analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms were used to screen representative genes for functional enrichment. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) were used to identify the expression of five candidate differential expressed RNAs.

RESULTS

Information of samples from 375 cases of gastric cancer and 32 healthy cases (normal tissues) were downloaded from the TCGA database. A total of 1632 DE-mRNAs, 1008 DE-lncRNAs and 104 DE-miRNAs were identified and screened. Among them, 65 DE-lncRNAs, 10 DE-miRNAs, and 10 DE-mRNAs form lncRNAs-miRNAs-mRNAs regulatory network. Additionally, 10 lncRNAs and 2 mRNAs were associated with the prognosis of GA. Multivariable COX analysis revealed that AC018781.1 and VCAN-AS1 were independent risk factors for GA. GO functional enrichment analysis found DE-mRNA was significantly enriched TERM (P < 0.05). The KEGG signal regulatory network analysis found 11 significantly enrichment networks, the most prevailing was for the AGE-RAGE signaling pathway associated with Diabetic complications. Results of RT-qPCR was consistent with the in silico results.

CONCLUSIONS

The results of the present study represent a view of GA from a analysis of lncRNA, miRNA and mRNA. The network of lncRNA-miRNA-mRNA interactions revealed here may potentially further experimental studies and may help biomarker development for GA.

摘要

背景

长链非编码RNA(lncRNAs)-微小RNA(miRNAs)-信使RNA(mRNAs)网络在胃腺癌(GA)中起重要作用。识别这些网络为了解这些RNA在胃癌中的作用提供了新的视角。

目的

筛选生物信息数据库以表征和研究调控网络,并进一步探究这种调控在胃腺癌中的潜在预后关系。

方法

通过挖掘癌症基因组图谱(TCGA)数据库,我们收集了与胃腺癌相关的lncRNAs、miRNAs和mRNAs的信息。我们使用R软件识别差异表达(DE)的lncRNAs、miRNAs和mRNAs。构建lncRNA-miRNA-mRNA相互作用网络并进行后续生存分析。使用Cytoscape上的生物网络基因本体插件工具选出代表性基因。利用基因本体(GO)和京都基因与基因组百科全书(KEGG)术语的额外分析来筛选具有功能富集的代表性基因。采用逆转录定量聚合酶链反应(RT-qPCR)来鉴定5种候选差异表达RNA的表达情况。

结果

从TCGA数据库下载了375例胃癌样本和32例健康对照(正常组织)样本的信息。共鉴定并筛选出1632个差异表达的mRNA、1008个差异表达的lncRNA和104个差异表达的miRNA。其中,65个差异表达的lncRNA、10个差异表达的miRNA和10个差异表达的mRNA形成了lncRNA-miRNA-mRNA调控网络。此外,10个lncRNA和2个mRNA与胃腺癌的预后相关。多变量COX分析显示,AC018781.1和VCAN-AS1是胃腺癌的独立危险因素。GO功能富集分析发现差异表达的mRNA显著富集(P < 0.05)。KEGG信号调控网络分析发现11个显著富集的网络,最主要的是与糖尿病并发症相关的AGE-RAGE信号通路。RT-qPCR结果与计算机模拟结果一致。

结论

本研究结果从lncRNA、miRNA和mRNA分析的角度呈现了胃腺癌的情况。这里揭示的lncRNA-miRNA-mRNA相互作用网络可能会推动进一步的实验研究,并有助于胃腺癌生物标志物的开发。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验