IEEE Trans Vis Comput Graph. 2021 May;27(5):2577-2586. doi: 10.1109/TVCG.2021.3067784. Epub 2021 Apr 15.
The cameras in modern gaze-tracking systems suffer from fundamental bandwidth and power limitations, constraining data acquisition speed to 300 Hz realistically. This obstructs the use of mobile eye trackers to perform, e.g., low latency predictive rendering, or to study quick and subtle eye motions like microsaccades using head-mounted devices in the wild. Here, we propose a hybrid frame-event-based near-eye gaze tracking system offering update rates beyond 10,000 Hz with an accuracy that matches that of high-end desktop-mounted commercial trackers when evaluated in the same conditions. Our system, previewed in Figure 1, builds on emerging event cameras that simultaneously acquire regularly sampled frames and adaptively sampled events. We develop an online 2D pupil fitting method that updates a parametric model every one or few events. Moreover, we propose a polynomial regressor for estimating the point of gaze from the parametric pupil model in real time. Using the first event-based gaze dataset, we demonstrate that our system achieves accuracies of 0.45°-1.75° for fields of view from 45° to 98°. With this technology, we hope to enable a new generation of ultra-low-latency gaze-contingent rendering and display techniques for virtual and augmented reality.
现代眼动追踪系统中的相机受到基本带宽和功率限制的约束,实际上将数据采集速度限制在 300 Hz。这阻碍了使用移动眼动追踪器来执行例如低延迟预测渲染,或者在野外使用头戴式设备研究快速微妙的眼球运动,如微扫视。在这里,我们提出了一种混合帧事件的近眼眼动跟踪系统,提供超过 10000 Hz 的更新率,并且在相同条件下评估时,其精度与高端桌面式商业追踪器相匹配。我们的系统,如图 1 所示,基于新兴的事件相机,这些相机同时获取定期采样的帧和自适应采样的事件。我们开发了一种在线 2D 瞳孔拟合方法,该方法每一个或几个事件更新一个参数模型。此外,我们提出了一种多项式回归器,用于实时从参数瞳孔模型估计注视点。使用第一个基于事件的眼动数据集,我们证明我们的系统在 45°到 98°的视场范围内实现了 0.45°-1.75°的精度。有了这项技术,我们希望为虚拟现实和增强现实技术启用新一代超低延迟的基于注视的渲染和显示技术。