Suppr超能文献

OpenEDS2020 虚拟现实注视追踪挑战赛:数据集和结果。

OpenEDS2020 Challenge on Gaze Tracking for VR: Dataset and Results.

机构信息

Department of Mathematics and Informatics, Universitat de Barcelona, 08007 Barcelona, Spain.

Computer Vision Center, Campus UAB, 08193 Bellaterra, Spain.

出版信息

Sensors (Basel). 2021 Jul 13;21(14):4769. doi: 10.3390/s21144769.

Abstract

This paper summarizes the OpenEDS 2020 Challenge dataset, the proposed baselines, and results obtained by the top three winners of each competition: (1) Gaze prediction Challenge, with the goal of predicting the gaze vector 1 to 5 frames into the future based on a sequence of previous eye images, and (2) Sparse Temporal Semantic Segmentation Challenge, with the goal of using temporal information to propagate semantic eye labels to contiguous eye image frames. Both competitions were based on the OpenEDS2020 dataset, a novel dataset of eye-image sequences captured at a frame rate of 100 Hz under controlled illumination, using a virtual-reality head-mounted display with two synchronized eye-facing cameras. The dataset, which we make publicly available for the research community, consists of 87 subjects performing several gaze-elicited tasks, and is divided into 2 subsets, one for each competition task. The proposed baselines, based on deep learning approaches, obtained an average angular error of 5.37 degrees for gaze prediction, and a mean intersection over union score (mIoU) of 84.1% for semantic segmentation. The winning solutions were able to outperform the baselines, obtaining up to 3.17 degrees for the former task and 95.2% mIoU for the latter.

摘要

本文总结了 OpenEDS 2020 挑战赛数据集、提出的基线以及每个竞赛的前三名获胜者的结果:(1)注视预测挑战赛,目标是根据一系列先前的眼图像预测未来 1 到 5 帧的注视向量;(2)稀疏时间语义分割挑战赛,目标是利用时间信息将语义眼标签传播到连续的眼图像帧。这两个竞赛都是基于 OpenEDS2020 数据集进行的,该数据集是在受控照明下以 100Hz 的帧率捕获的眼图像序列的新型数据集,使用具有两个同步眼对置相机的虚拟现实头戴式显示器。我们为研究社区公开提供了该数据集,其中包含 87 位受试者执行的多项注视诱发任务,并分为两个子集,每个子集用于一个竞赛任务。基于深度学习方法的提出的基线在注视预测方面获得了 5.37 度的平均角度误差,在语义分割方面获得了 84.1%的平均交并比(mIoU)得分。获胜的解决方案能够超越基线,在前一项任务中最高可达 3.17 度,在后一项任务中最高可达 95.2%的 mIoU。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec6/8309797/01a126c62163/sensors-21-04769-g001.jpg

相似文献

1
OpenEDS2020 Challenge on Gaze Tracking for VR: Dataset and Results.
Sensors (Basel). 2021 Jul 13;21(14):4769. doi: 10.3390/s21144769.
2
ARETT: Augmented Reality Eye Tracking Toolkit for Head Mounted Displays.
Sensors (Basel). 2021 Mar 23;21(6):2234. doi: 10.3390/s21062234.
3
EllSeg: An Ellipse Segmentation Framework for Robust Gaze Tracking.
IEEE Trans Vis Comput Graph. 2021 May;27(5):2757-2767. doi: 10.1109/TVCG.2021.3067765. Epub 2021 Apr 15.
4
An eye tracking based virtual reality system for use inside magnetic resonance imaging systems.
Sci Rep. 2021 Aug 11;11(1):16301. doi: 10.1038/s41598-021-95634-y.
5
Person-Specific Gaze Estimation from Low-Quality Webcam Images.
Sensors (Basel). 2023 Apr 20;23(8):4138. doi: 10.3390/s23084138.
6
Gaze Tracking and Point Estimation Using Low-Cost Head-Mounted Devices.
Sensors (Basel). 2020 Mar 30;20(7):1917. doi: 10.3390/s20071917.
8
EHTask: Recognizing User Tasks From Eye and Head Movements in Immersive Virtual Reality.
IEEE Trans Vis Comput Graph. 2023 Apr;29(4):1992-2004. doi: 10.1109/TVCG.2021.3138902. Epub 2023 Feb 28.
9
A dataset of eye gaze images for calibration-free eye tracking augmented reality headset.
Sci Data. 2022 Mar 29;9(1):115. doi: 10.1038/s41597-022-01200-0.

引用本文的文献

本文引用的文献

1
Gaze-in-wild: A dataset for studying eye and head coordination in everyday activities.
Sci Rep. 2020 Feb 13;10(1):2539. doi: 10.1038/s41598-020-59251-5.
2
DeepVOG: Open-source pupil segmentation and gaze estimation in neuroscience using deep learning.
J Neurosci Methods. 2019 Aug 1;324:108307. doi: 10.1016/j.jneumeth.2019.05.016. Epub 2019 Jun 6.
3
MPIIGaze: Real-World Dataset and Deep Appearance-Based Gaze Estimation.
IEEE Trans Pattern Anal Mach Intell. 2019 Jan;41(1):162-175. doi: 10.1109/TPAMI.2017.2778103. Epub 2017 Nov 28.
4
Virtual Reality as an Educational and Training Tool for Medicine.
J Med Syst. 2018 Feb 1;42(3):50. doi: 10.1007/s10916-018-0900-2.
5
Application of virtual reality technology in clinical medicine.
Am J Transl Res. 2017 Sep 15;9(9):3867-3880. eCollection 2017.
6
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2481-2495. doi: 10.1109/TPAMI.2016.2644615. Epub 2017 Jan 2.
7
LSTM: A Search Space Odyssey.
IEEE Trans Neural Netw Learn Syst. 2017 Oct;28(10):2222-2232. doi: 10.1109/TNNLS.2016.2582924. Epub 2016 Jul 8.
8
Social attention in ASD: A review and meta-analysis of eye-tracking studies.
Res Dev Disabil. 2016 Jan;48:79-93. doi: 10.1016/j.ridd.2015.10.011. Epub 2015 Nov 6.
10
In the eye of the beholder: a survey of models for eyes and gaze.
IEEE Trans Pattern Anal Mach Intell. 2010 Mar;32(3):478-500. doi: 10.1109/TPAMI.2009.30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验