Suppr超能文献

利用低复杂度、概率性洪泛平原制图方法改进洪水灾害数据集。

Improving flood hazard datasets using a low-complexity, probabilistic floodplain mapping approach.

机构信息

Department of Geography, University of Vermont, Burlington, Vermont, United States of America.

Gund Institute for Environment, University of Vermont, Burlington, Vermont, United States of America.

出版信息

PLoS One. 2021 Mar 29;16(3):e0248683. doi: 10.1371/journal.pone.0248683. eCollection 2021.

Abstract

As runoff patterns shift with a changing climate, it is critical to effectively communicate current and future flood risks, yet existing flood hazard maps are insufficient. Modifying, extending, or updating flood inundation extents is difficult, especially over large scales, because traditional floodplain mapping approaches are data and resource intensive. Low-complexity floodplain mapping techniques are promising alternatives, but their simplistic representation of process falls short of capturing inundation patterns in all situations or settings. To address these needs and deficiencies, we formalize and extend the functionality of the Height Above Nearest Drainage (i.e., HAND) floodplain mapping approach into the probHAND model by incorporating an uncertainty analysis. With publicly available datasets, the probHAND model can produce probabilistic floodplain maps for large areas relatively rapidly. We describe the modeling approach and then provide an example application in the Lake Champlain Basin, Vermont, USA. Uncertainties translate to on-the-ground changes to inundated areas, or floodplain widths, in the study area by an average of 40%. We found that the spatial extent of probable inundation captured the distribution of observed and modeled flood extents well, suggesting that low-complexity models may be sufficient for representing inundation extents in support of flood risk and conservation mapping applications, especially when uncertainties in parameter inputs and process simplifications are accounted for. To improve the accuracy of flood hazard datasets, we recommend investing limited resources in accurate topographic datasets and improved flood frequency analyses. Such investments will have the greatest impact on decreasing model output variability, therefore increasing the certainty of flood inundation extents.

摘要

随着气候变化导致径流动态的改变,有效地传达当前和未来的洪水风险至关重要,但现有的洪水灾害地图还不够完善。修改、扩展或更新洪水泛滥范围是困难的,尤其是在大范围内,因为传统的洪泛区制图方法需要大量的数据和资源。低复杂度的洪泛区制图技术是很有前景的替代方法,但它们对过程的简化表示不足以在所有情况下或环境中捕捉到泛滥模式。为了解决这些需求和不足,我们将 Height Above Nearest Drainage(即 HAND)洪泛区制图方法的功能正式化并扩展到 probHAND 模型中,同时纳入了不确定性分析。利用公开数据集,probHAND 模型可以相对快速地为大面积地区生成概率性洪泛区地图。我们描述了建模方法,然后在美国佛蒙特州的尚普兰湖盆地提供了一个示例应用。不确定性导致研究区域的淹没区域或洪泛区宽度平均变化了 40%。我们发现,可能淹没的空间范围很好地捕捉到了观测到的和模拟的洪水范围的分布,这表明低复杂度模型可能足以代表淹没范围,以支持洪水风险和保护制图应用,尤其是在考虑到参数输入和过程简化的不确定性时。为了提高洪水危险数据集的准确性,我们建议将有限的资源投入到准确的地形数据集和改进的洪水频率分析中。这种投资将对减少模型输出的变异性产生最大的影响,从而提高洪水泛滥范围的确定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33b0/8006981/591344e396c7/pone.0248683.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验