CNR IRPI, Via Della Madonna Alta 126, I-06128, Perugia, Italy.
CNR IRPI, Via Della Madonna Alta 126, I-06128, Perugia, Italy.
J Environ Manage. 2021 Sep 15;294:112986. doi: 10.1016/j.jenvman.2021.112986. Epub 2021 Jun 6.
We present Flood-SHE, a data-driven, statistically-based procedure for the delineation of areas expected to be inundated by river floods. We applied Flood-SHE in the 23 River Basin Authorities (RBAs) in Italy using information on the presence or absence of inundations obtained from existing flood zonings as the dependent variable, and six hydro-morphometric variables computed from a 10 m × 10 m DEM as covariates. We trained 96 models for each RBA using 32 combinations of the hydro-morphometric covariates for the three return periods, for a total of 2208 models, which we validated using 32 model sets for each of the covariate combinations and return periods, for a total of 3072 validation models. In all the RBAs, Flood-SHE delineated accurately potentially inundated areas that matched closely the corresponding flood zonings defined by physically-based hydro-dynamic flood routing and inundation models. Flood-SHE delineated larger to much larger areas as potentially subject of being inundated than the physically-based models, depending on the quality of the flood information. Analysis of the sites with flood human consequences revealed that the new data-driven inundation zones are good predictors of flood risk to the population of Italy. Our experiment confirmed that a small number of hydro-morphometric terrain variables is sufficient to delineate accurate inundation zonings in a variety of physiographical settings, opening to the possibility of using Flood-SHE in other areas. We expect the new data-driven inundation zonings to be useful where flood zonings built on hydrological modelling are not available, and to decide where improved flood hazard zoning is needed.
我们提出了 Flood-SHE,这是一种基于数据和统计学的方法,用于划定预计会受到河流洪水淹没的区域。我们在意大利的 23 个流域管理局(RBAs)应用了 Flood-SHE,使用现有洪水区划中存在或不存在洪水的信息作为因变量,以及从 10m×10m 的数字高程模型(DEM)中计算的六个水文形态变量作为协变量。我们为每个 RBA 使用了 32 种水文形态学协变量的组合来训练 96 个模型,这些模型的组合涵盖了三个重现期,总共训练了 2208 个模型。我们使用每个协变量组合和重现期的 32 个模型集来验证这些模型,总共验证了 3072 个模型。在所有的 RBAs 中,Flood-SHE 都准确地划定了潜在的洪水淹没区域,这些区域与基于物理的水力洪水路径和淹没模型定义的洪水区划非常吻合。Flood-SHE 划定的潜在洪水淹没区域比基于物理的模型划定的区域更大或大得多,这取决于洪水信息的质量。对有人为洪水后果的地点进行的分析表明,新的基于数据的洪水淹没区是意大利人口面临洪水风险的良好预测指标。我们的实验证实,少量的水文形态学地形变量足以划定各种地形环境中的准确洪水淹没区划,为在其他地区使用 Flood-SHE 开辟了可能性。我们预计,在没有基于水文模型的洪水区划的地方,新的基于数据的洪水淹没区划将是有用的,并且可以决定在哪里需要改进洪水危险区划。