Suppr超能文献

应用主成分分析(PCA)评估好氧颗粒污泥实现部分硝化过程中的参数相关性。

Application of principal component analysis (PCA) to the assessment of parameter correlations in the partial-nitrification process using aerobic granular sludge.

机构信息

Department of Civil & Environmental Engineering, Hanyang University, 55 Hanyangdaehak-ro, Ansan City, Kyeonggido, 426-791, Republic of Korea.

出版信息

J Environ Manage. 2021 Jun 15;288:112408. doi: 10.1016/j.jenvman.2021.112408. Epub 2021 Mar 27.

Abstract

For the first time, principal component analysis (PCA) was used to extract relevant information hidden in the partial-nitrification process using aerobic granular sludge. The objectives of this research are (a) to determine total ammonia nitrogen (TAN), total nitrite nitrogen (NO-N), nitrate nitrogen (NO-N), and other water quality parameters; (b) to identify the diversity of nitrification and denitrification bacterial community of wastewater samples during the partial-nitrification process using aerobic granular sludge and; (c) to analyze the correlation of available parameters using PCA. The nitrite accumulation ratio was determined from TAN, NO-N, and NO-N. Other water quality parameters were mixed liquor volatile suspended solids (MLVSS), alkalinity, total nitrogen (TN) and sludge volume index (SVI), pH, and dissolved oxygen (DO). The identification of bacterial community was conducted using 16S rRNA gene-based pyrosequencing by GS Junior Sequencing system. The water quality parameters were computed for PCA using software MATLAB. A nitrite accumulation ratio (NAR) between 0.55 and 0.85 was determined while maintaining the aerobic granular sludge's compact and dense structure. The PCA was used to reduce the data dimensionality from the original 8 variables to 2 principal components explaining 75% of the total data variance. Applying PCA to the data analysis in biological wastewater treatment can support detecting data anomalies and separating useful information from unwanted interferences.

摘要

首次采用主成分分析(PCA)方法,从利用好氧颗粒污泥实现部分硝化过程中提取隐藏的相关信息。本研究的目的是:(a) 确定总氨氮(TAN)、亚硝态氮(NO-N)、硝态氮(NO-N)和其他水质参数;(b) 利用好氧颗粒污泥鉴定废水样品在部分硝化过程中硝化和反硝化细菌群落的多样性;(c) 使用 PCA 分析可用参数的相关性。通过 TAN、NO-N 和 NO-N 确定亚硝态氮积累比。其他水质参数包括混合液挥发性悬浮固体(MLVSS)、碱度、总氮(TN)和污泥体积指数(SVI)、pH 值和溶解氧(DO)。利用 GS Junior 测序系统的 16S rRNA 基因焦磷酸测序进行细菌群落鉴定。利用软件 MATLAB 对水质参数进行 PCA 计算。在保持好氧颗粒污泥结构紧凑和密实的情况下,确定亚硝态氮积累比(NAR)在 0.55 到 0.85 之间。通过将数据从原始 8 个变量降维到 2 个主成分,可以解释总数据方差的 75%,将 PCA 应用于生物废水处理中的数据分析,可以支持检测数据异常并从不需要的干扰中分离有用信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验