Gomez-Ramirez Jaime, Quilis-Sancho Javier, Fernandez-Blazquez Miguel A
Instituto de Salud Carlos III, Centro de Alzheimer Fundación Reina Sofía, Madrid, Spain.
Neuroinformatics. 2022 Jan;20(1):63-72. doi: 10.1007/s12021-021-09520-z. Epub 2021 Mar 30.
In this study, we perform a comparative analysis of automated image segmentation of subcortical structures in the elderly brain. Manual segmentation is very time-consuming and automated methods are gaining importance as a clinical tool for diagnosis. The two most commonly used software libraries for brain segmentation -FreeSurfer and FSL- are put to work in a large dataset of 4,028 magnetic resonance imaging (MRI) scans collected for this study. We find a lack of linear correlation between the segmentation volume estimates obtained from FreeSurfer and FSL. On the other hand, FreeSurfer volume estimates tend to be larger thanFSL estimates of the areas putamen, thalamus, amygdala, caudate, pallidum, hippocampus, and accumbens. The characterization of the performance of brain segmentation algorithms in large datasets as the one presented here is a necessary step towards partially or fully automated end-to-end neuroimaging workflow both in clinical and research settings.
在本研究中,我们对老年人大脑皮质下结构的自动图像分割进行了比较分析。手动分割非常耗时,而自动方法作为一种临床诊断工具正变得越来越重要。用于脑部分割的两个最常用的软件库——FreeSurfer和FSL——被应用于为该研究收集的包含4028例磁共振成像(MRI)扫描的大型数据集中。我们发现从FreeSurfer和FSL获得的分割体积估计值之间缺乏线性相关性。另一方面,FreeSurfer的体积估计值往往大于FSL对壳核、丘脑、杏仁核、尾状核、苍白球、海马体和伏隔核区域的估计值。如此处所示,在大型数据集中对脑部分割算法的性能进行表征,是在临床和研究环境中迈向部分或完全自动化的端到端神经成像工作流程的必要步骤。