Suppr超能文献

儿童磁共振图像中的海马体和杏仁核体积:评估FreeSurfer和FSL相对于手动分割的准确性。

Hippocampus and amygdala volumes from magnetic resonance images in children: Assessing accuracy of FreeSurfer and FSL against manual segmentation.

作者信息

Schoemaker Dorothee, Buss Claudia, Head Kevin, Sandman Curt A, Davis Elysia P, Chakravarty M Mallar, Gauthier Serge, Pruessner Jens C

机构信息

McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada; Douglas Hospital Research Centre, Psychiatry Department, McGill University, Montreal, QC, Canada.

University of California at Irvine, CA, USA; Charité, Berlin, Germany.

出版信息

Neuroimage. 2016 Apr 1;129:1-14. doi: 10.1016/j.neuroimage.2016.01.038. Epub 2016 Jan 26.

Abstract

The volumetric quantification of brain structures is of great interest in pediatric populations because it allows the investigation of different factors influencing neurodevelopment. FreeSurfer and FSL both provide frequently used packages for automatic segmentation of brain structures. In this study, we examined the accuracy and consistency of those two automated protocols relative to manual segmentation, commonly considered as the "gold standard" technique, for estimating hippocampus and amygdala volumes in a sample of preadolescent children aged between 6 to 11 years. The volumes obtained with FreeSurfer and FSL-FIRST were evaluated and compared with manual segmentations with respect to volume difference, spatial agreement and between- and within-method correlations. Results highlighted a tendency for both automated techniques to overestimate hippocampus and amygdala volumes, in comparison to manual segmentation. This was more pronounced when using FreeSurfer than FSL-FIRST and, for both techniques, the overestimation was more marked for the amygdala than the hippocampus. Pearson correlations support moderate associations between manual tracing and FreeSurfer for hippocampus (right r=0.69, p<0.001; left r=0.77, p<0.001) and amygdala (right r=0.61, p<0.001; left r=0.67, p<0.001) volumes. Correlation coefficients between manual segmentation and FSL-FIRST were statistically significant (right hippocampus r=0.59, p<0.001; left hippocampus r=0.51, p<0.001; right amygdala r=0.35, p<0.001; left amygdala r=0.31, p<0.001) but were significantly weaker, for all investigated structures. When computing intraclass correlation coefficients between manual tracing and automatic segmentation, all comparisons, except for left hippocampus volume estimated with FreeSurfer, failed to reach 0.70. When looking at each method separately, correlations between left and right hemispheric volumes showed strong associations between bilateral hippocampus and bilateral amygdala volumes when assessed using manual segmentation or FreeSurfer. These correlations were significantly weaker when volumes were assessed with FSL-FIRST. Finally, Bland-Altman plots suggest that the difference between manual and automatic segmentation might be influenced by the volume of the structure, because smaller volumes were associated with larger volume differences between techniques. These results demonstrate that, at least in a pediatric population, the agreement between amygdala and hippocampus volumes obtained with automated FSL-FIRST and FreeSurfer protocols and those obtained with manual segmentation is not strong. Visual inspection by an informed individual and, if necessary, manual correction of automated segmentation outputs are important to ensure validity of volumetric results and interpretation of related findings.

摘要

脑结构的体积定量分析在儿科人群中具有重要意义,因为它有助于研究影响神经发育的不同因素。FreeSurfer和FSL都提供了常用的脑结构自动分割软件包。在本研究中,我们检验了这两种自动化方案相对于通常被视为“金标准”技术的手动分割的准确性和一致性,以估计6至11岁青春期前儿童样本中海马体和杏仁核的体积。对通过FreeSurfer和FSL-FIRST获得的体积进行了评估,并在体积差异、空间一致性以及方法间和方法内相关性方面与手动分割进行了比较。结果表明,与手动分割相比,两种自动化技术都有高估海马体和杏仁核体积的趋势。使用FreeSurfer时这种情况比使用FSL-FIRST时更明显,并且对于两种技术而言,杏仁核的高估比海马体更显著。Pearson相关性支持手动追踪与FreeSurfer在海马体(右侧r = 0.69,p < 0.001;左侧r = 0.77,p < 0.001)和杏仁核(右侧r = 0.61,p < 0.001;左侧r = 0.67,p < 0.001)体积上的中度关联。手动分割与FSL-FIRST之间的相关系数具有统计学意义(右侧海马体r = 0.59,p < 0.001;左侧海马体r = 0.51,p < 0.001;右侧杏仁核r = 0.35,p < 0.001;左侧杏仁核r = 0.31,p < 0.001),但对于所有研究结构而言,其相关性明显较弱。在计算手动追踪与自动分割之间的组内相关系数时,除了用FreeSurfer估计的左侧海马体体积外,所有比较均未达到0.70。当分别查看每种方法时,在使用手动分割或FreeSurfer评估时,左右半球体积之间的相关性显示双侧海马体和双侧杏仁核体积之间存在强关联。当用FSL-FIRST评估体积时,这些相关性明显较弱。最后,Bland-Altman图表明,手动分割与自动分割之间的差异可能受结构体积的影响,因为较小的体积与技术之间较大的体积差异相关。这些结果表明,至少在儿科人群中,通过自动化的FSL-FIRST和FreeSurfer方案获得的杏仁核和海马体体积与通过手动分割获得的体积之间的一致性不强。由专业人员进行视觉检查,并在必要时对手动分割输出进行手动校正,对于确保体积测量结果的有效性和相关研究结果的解释非常重要。

相似文献

2
Evaluating accuracy of striatal, pallidal, and thalamic segmentation methods: Comparing automated approaches to manual delineation.
Neuroimage. 2018 Apr 15;170:182-198. doi: 10.1016/j.neuroimage.2017.02.069. Epub 2017 Mar 1.
4
Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
Neuroimage. 2014 Nov 1;101:494-512. doi: 10.1016/j.neuroimage.2014.04.054. Epub 2014 Apr 29.
5
Automated versus manual segmentation of brain region volumes in former football players.
Neuroimage Clin. 2018 Mar 21;18:888-896. doi: 10.1016/j.nicl.2018.03.026. eCollection 2018.
6
A comparative study of segmentation techniques for the quantification of brain subcortical volume.
Brain Imaging Behav. 2018 Dec;12(6):1678-1695. doi: 10.1007/s11682-018-9835-y.
7
Charting the human amygdala development across childhood and adolescence: Manual and automatic segmentation.
Dev Cogn Neurosci. 2021 Dec;52:101028. doi: 10.1016/j.dcn.2021.101028. Epub 2021 Oct 28.
9
A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes.
Neuroimage. 2009 Apr 15;45(3):855-66. doi: 10.1016/j.neuroimage.2008.12.033. Epub 2008 Dec 30.
10
Amygdalar and hippocampal volume: A comparison between manual segmentation, Freesurfer and VBM.
J Neurosci Methods. 2015 Sep 30;253:254-61. doi: 10.1016/j.jneumeth.2015.05.024. Epub 2015 Jun 6.

引用本文的文献

1
In vivo structural analyses of amygdala subregions in relation to stressful life events: A systematic review.
Neurosci Appl. 2023 Nov 8;3:103921. doi: 10.1016/j.nsa.2023.103921. eCollection 2024.
2
Verifying the concordance between motion corrected and conventional MPRAGE for pediatric morphometric analysis.
Front Neurosci. 2025 May 9;19:1534924. doi: 10.3389/fnins.2025.1534924. eCollection 2025.
5
A road map to manual segmentation of cerebral structures.
J Anat. 2025 May;246(5):819-828. doi: 10.1111/joa.14167. Epub 2024 Oct 28.
10
The effects of psychotherapy for anhedonia on subcortical brain volumes measured with ultra-high field MRI.
J Affect Disord. 2024 Sep 15;361:128-138. doi: 10.1016/j.jad.2024.05.140. Epub 2024 May 28.

本文引用的文献

1
Striatal shape abnormalities as novel neurodevelopmental endophenotypes in schizophrenia: a longitudinal study.
Hum Brain Mapp. 2015 Apr;36(4):1458-69. doi: 10.1002/hbm.22715. Epub 2014 Dec 11.
3
Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
Neuroimage. 2014 Nov 1;101:494-512. doi: 10.1016/j.neuroimage.2014.04.054. Epub 2014 Apr 29.
4
Longitudinal four-dimensional mapping of subcortical anatomy in human development.
Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):1592-7. doi: 10.1073/pnas.1316911111. Epub 2014 Jan 13.
5
Developmental changes in hippocampal shape among preadolescent children.
Int J Dev Neurosci. 2013 Nov;31(7):473-81. doi: 10.1016/j.ijdevneu.2013.06.001. Epub 2013 Jun 14.
6
Fetal glucocorticoid exposure is associated with preadolescent brain development.
Biol Psychiatry. 2013 Nov 1;74(9):647-55. doi: 10.1016/j.biopsych.2013.03.009. Epub 2013 Apr 21.
8
Maternal cortisol over the course of pregnancy and subsequent child amygdala and hippocampus volumes and affective problems.
Proc Natl Acad Sci U S A. 2012 May 15;109(20):E1312-9. doi: 10.1073/pnas.1201295109. Epub 2012 Apr 23.
10
A Bayesian model of shape and appearance for subcortical brain segmentation.
Neuroimage. 2011 Jun 1;56(3):907-22. doi: 10.1016/j.neuroimage.2011.02.046. Epub 2011 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验