Theoretical Ecology, University of Regensburg, Universitätsstraße 31, Regensburg, 93053, Germany.
UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian, EH260QB, UK.
Ecol Lett. 2021 Jun;24(6):1251-1261. doi: 10.1111/ele.13728. Epub 2021 Mar 30.
Ecologists increasingly rely on complex computer simulations to forecast ecological systems. To make such forecasts precise, uncertainties in model parameters and structure must be reduced and correctly propagated to model outputs. Naively using standard statistical techniques for this task, however, can lead to bias and underestimation of uncertainties in parameters and predictions. Here, we explain why these problems occur and propose a framework for robust inference with complex computer simulations. After having identified that model error is more consequential in complex computer simulations, due to their more pronounced nonlinearity and interconnectedness, we discuss as possible solutions data rebalancing and adding bias corrections on model outputs or processes during or after the calibration procedure. We illustrate the methods in a case study, using a dynamic vegetation model. We conclude that developing better methods for robust inference of complex computer simulations is vital for generating reliable predictions of ecosystem responses.
生态学家越来越依赖复杂的计算机模拟来预测生态系统。为了使这些预测更加精确,必须减少模型参数和结构的不确定性,并将其正确地传播到模型输出中。然而,在这项任务中,盲目地使用标准统计技术可能会导致参数和预测不确定性的偏差和低估。在这里,我们解释了为什么会出现这些问题,并提出了一个用于复杂计算机模拟的稳健推断框架。在确定由于更明显的非线性和相互关联性,复杂计算机模拟中的模型误差更为重要之后,我们讨论了在校准过程中或之后在模型输出或过程上进行数据再平衡和添加偏差校正的可能解决方案。我们在一个使用动态植被模型的案例研究中说明了这些方法。我们的结论是,开发用于复杂计算机模拟稳健推断的更好方法对于生成生态系统响应的可靠预测至关重要。