Suppr超能文献

弥合实施差距,连接大型生态数据集与复杂模型。

Bridging implementation gaps to connect large ecological datasets and complex models.

作者信息

Raiho Ann M, Nicklen E Fleur, Foster Adrianna C, Roland Carl A, Hooten Mevin B

机构信息

Department of Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins Colorado USA.

Denali National Park and Preserve National Park Service Fairbanks Alaska USA.

出版信息

Ecol Evol. 2021 Dec 14;11(24):18271-18287. doi: 10.1002/ece3.8420. eCollection 2021 Dec.

Abstract

Merging robust statistical methods with complex simulation models is a frontier for improving ecological inference and forecasting. However, bringing these tools together is not always straightforward. Matching data with model output, determining starting conditions, and addressing high dimensionality are some of the complexities that arise when attempting to incorporate ecological field data with mechanistic models directly using sophisticated statistical methods. To illustrate these complexities and pragmatic paths forward, we present an analysis using tree-ring basal area reconstructions in Denali National Park (DNPP) to constrain successional trajectories of two spruce species ( and ) simulated by a forest gap model, University of Virginia Forest Model Enhanced-UVAFME. Through this process, we provide preliminary ecological inference about the long-term competitive dynamics between slow-growing and relatively faster-growing . Incorporating tree-ring data into UVAFME allowed us to estimate a bias correction for stand age with improved parameter estimates. We found that higher parameter values for minimum growth under stress and maximum growth rate were key to improving simulations of coexistence, agreeing with recent research that faster-growing may outcompete under climate change scenarios. The implementation challenges we highlight are a crucial part of the conversation for how to bring models together with data to improve ecological inference and forecasting.

摘要

将强大的统计方法与复杂的模拟模型相结合是改善生态推断和预测的一个前沿领域。然而,将这些工具整合在一起并非总是一帆风顺。将数据与模型输出进行匹配、确定初始条件以及处理高维度问题,是在尝试直接使用复杂的统计方法将生态实地数据与机理模型相结合时出现的一些复杂情况。为了说明这些复杂性以及切实可行的前进道路,我们展示了一项分析,该分析利用德纳里国家公园(DNPP)的树木年轮断面积重建数据,来约束由森林林窗模型弗吉尼亚大学森林模型增强版(UVAFME)模拟的两种云杉物种(和)的演替轨迹。通过这个过程,我们对生长缓慢的和生长相对较快的之间的长期竞争动态提供了初步的生态推断。将树木年轮数据纳入UVAFME使我们能够通过改进参数估计来估计林分年龄的偏差校正。我们发现,胁迫下最小生长量和最大生长速率的较高参数值是改善共存模拟的关键,这与最近的研究结果一致,即在气候变化情景下,生长较快的可能会胜过。我们强调的实施挑战是关于如何将模型与数据结合以改善生态推断和预测的讨论的关键部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/868a/8717344/d822b304c4b3/ECE3-11-18271-g006.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验