ACS Chem Biol. 2021 Apr 16;16(4):604-614. doi: 10.1021/acschembio.0c00757. Epub 2021 Mar 30.
All life forms require nicotinamide adenine dinucleotide, NAD, and its reduced form NADH. They are redox partners in hundreds of cellular enzymatic reactions. Changes in the intracellular levels of total NAD (NAD + NADH) and the (NAD/NADH) ratio can cause cellular dysfunction. When not present in protein complexes, NADH and its phosphorylated form NADPH degrade through intricate mechanisms. Replenishment of a declining total NAD pool can be achieved with biosynthetic precursors that include one of the reduced forms of nicotinamide riboside (NR), NRH. NRH, like NADH and NADPH, is prone to degradation via oxidation, hydration, and isomerization and, as such, is an excellent model compound to rationalize the nonenzymatic metabolism of NAD(P)H in a biological context. Here, we report on the stability of NRH and its propensity to isomerize and irreversibly degrade. We also report the preparation of two of its naturally occurring isomers, their chemical stability, their reactivity toward NRH-processing enzymes, and their cell-specific cytotoxicity. Furthermore, we identify a mechanism by which NRH degradation causes covalent peptide modifications, a process that could expose a novel type of NADH-protein modifications and correlate NADH accumulation with "protein aging." This work highlights the current limitations in detecting NADH's endogenous catabolites and in establishing the capacity for inducing cellular dysfunction.
所有生命形式都需要烟酰胺腺嘌呤二核苷酸 (NAD) 及其还原形式烟酰胺腺嘌呤二核苷酸 (NADH)。它们是数百种细胞酶促反应中的氧化还原伴侣。细胞内总 NAD (NAD + NADH) 水平和 (NAD/NADH) 比值的变化可导致细胞功能障碍。当 NADH 及其磷酸化形式 NADPH 不在蛋白质复合物中时,它们会通过复杂的机制降解。通过包括烟酰胺核糖 (NR) 的还原形式之一的生物合成前体,可以补充不断减少的总 NAD 池。NRH 与 NADH 和 NADPH 一样,容易通过氧化、水合和异构化降解,因此是合理推断 NAD(P)H 在生物环境中非酶代谢的理想模型化合物。在这里,我们报告了 NRH 的稳定性及其异构化和不可逆降解的倾向。我们还报告了两种其天然异构体的制备、它们的化学稳定性、它们对 NRH 处理酶的反应性以及它们对细胞特异性细胞毒性。此外,我们确定了 NRH 降解导致肽共价修饰的机制,这一过程可能会暴露 NADH 蛋白质修饰的新型类型,并将 NADH 积累与“蛋白质衰老”相关联。这项工作突出了当前在检测 NADH 内源性代谢产物以及建立诱导细胞功能障碍的能力方面的局限性。