Department of Computer Science and Engineering at IIT (BHU), Varanasi, India.
Division of Veterinary Biotechnology, IVRI, Izatnagar, India.
Brief Bioinform. 2021 Sep 2;22(5). doi: 10.1093/bib/bbab065.
The overuse of antibiotics has led to emergence of antimicrobial resistance, and as a result, antibacterial peptides (ABPs) are receiving significant attention as an alternative. Identification of effective ABPs in lab from natural sources is a cost-intensive and time-consuming process. Therefore, there is a need for the development of in silico models, which can identify novel ABPs in protein sequences for chemical synthesis and testing. In this study, we propose a deep learning classifier named Deep-ABPpred that can identify ABPs in protein sequences. We developed Deep-ABPpred using bidirectional long short-term memory algorithm with amino acid level features from word2vec. The results show that Deep-ABPpred outperforms other state-of-the-art ABP classifiers on both test and independent datasets. Our proposed model achieved the precision of approximately 97 and 94% on test dataset and independent dataset, respectively. The high precision suggests applicability of Deep-ABPpred in proposing novel ABPs for synthesis and experimentation. By utilizing Deep-ABPpred, we identified ABPs in the tail protein sequences of Streptococcus bacteriophages, chemically synthesized identified peptides in lab and tested their activity in vitro. These ABPs showed potent antibacterial activity against selected Gram-positive and Gram-negative bacteria, which confirms the capability of Deep-ABPpred in identifying novel ABPs in protein sequences. Based on the proposed approach, an online prediction server is also developed, which is freely accessible at https://abppred.anvil.app/. This web server takes the protein sequence as input and provides ABPs with high probability (>0.95) as output.
抗生素的过度使用导致了抗菌药物耐药性的出现,因此,抗菌肽 (ABP) 作为替代品受到了广泛关注。从天然来源的实验室中鉴定有效的 ABP 是一个成本高且耗时的过程。因此,需要开发计算模型,可以在蛋白质序列中识别出用于化学合成和测试的新型 ABP。在这项研究中,我们提出了一种名为 Deep-ABPpred 的深度学习分类器,可用于识别蛋白质序列中的 ABP。我们使用双向长短期记忆算法和 word2vec 的氨基酸水平特征开发了 Deep-ABPpred。结果表明,Deep-ABPpred 在测试集和独立数据集上均优于其他最先进的 ABP 分类器。我们提出的模型在测试数据集和独立数据集上的精度分别约为 97%和 94%。高精度表明 Deep-ABPpred 可用于提出新的 ABP 进行合成和实验。通过使用 Deep-ABPpred,我们在链球菌噬菌体的尾部蛋白序列中鉴定了 ABP,在实验室中化学合成了鉴定出的肽,并在体外测试了它们的活性。这些 ABP 对选定的革兰氏阳性和革兰氏阴性细菌表现出强烈的抗菌活性,这证实了 Deep-ABPpred 在识别蛋白质序列中的新型 ABP 的能力。基于提出的方法,还开发了一个在线预测服务器,可在 https://abppred.anvil.app/ 免费访问。该网络服务器接受蛋白质序列作为输入,并提供具有高概率 (>0.95) 的 ABP 作为输出。