Electrical and Computer Engineering Department, Carnegie Mellon University, Pittsburgh, PA, USA.
Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
Commun Biol. 2021 Mar 30;4(1):429. doi: 10.1038/s42003-021-01768-0.
A rapid and cost-effective noninvasive tool to detect and characterize neural silences can be of important benefit in diagnosing and treating many disorders. We propose an algorithm, SilenceMap, for uncovering the absence of electrophysiological signals, or neural silences, using noninvasive scalp electroencephalography (EEG) signals. By accounting for the contributions of different sources to the power of the recorded signals, and using a hemispheric baseline approach and a convex spectral clustering framework, SilenceMap permits rapid detection and localization of regions of silence in the brain using a relatively small amount of EEG data. SilenceMap substantially outperformed existing source localization algorithms in estimating the center-of-mass of the silence for three pediatric cortical resection patients, using fewer than 3 minutes of EEG recordings (13, 2, and 11mm vs. 25, 62, and 53 mm), as well for 100 different simulated regions of silence based on a real human head model (12 ± 0.7 mm vs. 54 ± 2.2 mm). SilenceMap paves the way towards accessible early diagnosis and continuous monitoring of altered physiological properties of human cortical function.
一种快速且经济有效的非侵入性工具,可以用于检测和描述神经沉默,这对于诊断和治疗许多疾病具有重要意义。我们提出了一种算法 SilenceMap,用于利用非侵入性头皮脑电图 (EEG) 信号揭示缺乏电生理信号或神经沉默的情况。通过考虑到不同源对记录信号功率的贡献,并使用半球基线方法和凸谱聚类框架,SilenceMap 可以使用相对较少的 EEG 数据快速检测和定位大脑中的沉默区域。SilenceMap 在使用少于 3 分钟的 EEG 记录(分别为 13、2 和 11mm 对 25、62 和 53mm)以及基于真实人头模型的 100 个不同模拟沉默区域(分别为 12±0.7mm 对 54±2.2mm)对三个小儿皮质切除术患者的沉默中心质量进行估计时,明显优于现有的源定位算法。SilenceMap 为早期诊断和持续监测人类皮质功能的生理特性改变铺平了道路。