IEEE Trans Biomed Eng. 2019 Apr;66(4):1115-1126. doi: 10.1109/TBME.2018.2867112. Epub 2018 Aug 24.
We present a novel signal processing algorithm for automated, noninvasive detection of cortical spreading depolarizations (CSDs) using electroencephalography (EEG) signals and validate the algorithm on simulated EEG signals. CSDs are waves of neurochemical changes that suppress the neuronal activity as they propagate across the brain's cortical surface. CSDs are believed to mediate secondary brain damage after brain trauma and cerebrovascular diseases like stroke. We address the following two key challenges in detecting CSDs from EEG signals: i) attenuation and loss of high spatial resolution information; and ii) cortical folds, which complicate tracking CSD waves.
Our algorithm detects and tracks "wavefronts" of a CSD wave, and stitch together data across space and time to make a detection. To test our algorithm, we provide different models of CSD waves, including different widths of CSD suppressions and different patterns, and use them to simulate scalp EEG signals using head models of four subjects.
Our results suggest that low-density EEG grids (40 electrodes) can detect CSD widths of 1.1 cm on average, while higher density EEG grids (340 electrodes) can detect CSD patterns as thin as 0.43 cm (less than minimum widths reported in prior works), among which single-gyrus CSDs are the hardest to detect because of their small suppression area.
The proposed algorithm is a first step toward noninvasive, automated detection of CSDs, which can help in reducing secondary brain damages.
我们提出了一种新的信号处理算法,用于使用脑电图(EEG)信号自动、无创地检测皮质扩散性抑制(CSD),并在模拟 EEG 信号上验证该算法。CSD 是一种神经化学变化的波,当它们在大脑皮质表面传播时会抑制神经元活动。CSD 被认为介导了脑外伤和中风等脑血管疾病后的继发性脑损伤。我们解决了从 EEG 信号中检测 CSD 时的以下两个关键挑战:i)衰减和丢失高空间分辨率信息;ii)皮质褶皱,这使得跟踪 CSD 波变得复杂。
我们的算法检测并跟踪 CSD 波的“波前”,并在空间和时间上拼接数据以进行检测。为了测试我们的算法,我们提供了不同的 CSD 波模型,包括不同宽度的 CSD 抑制和不同的模式,并使用它们来模拟四个受试者的头部模型的头皮 EEG 信号。
我们的结果表明,低密度 EEG 网格(40 个电极)平均可以检测到 1.1cm 的 CSD 宽度,而高密度 EEG 网格(340 个电极)可以检测到薄至 0.43cm 的 CSD 模式(小于之前研究报告的最小宽度),其中单脑回 CSD 由于其小的抑制区域而最难检测。
该算法是对 CSD 无创、自动检测的初步探索,有助于减少继发性脑损伤。