Suppr超能文献

一种受大脑启发的紧凑型认知映射系统。

A brain-inspired compact cognitive mapping system.

作者信息

Zeng Taiping, Si Bailu

机构信息

Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.

Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China.

出版信息

Cogn Neurodyn. 2021 Feb;15(1):91-101. doi: 10.1007/s11571-020-09621-6. Epub 2020 Jul 30.

Abstract

In many simultaneous localization and mapping (SLAM) systems, the map of the environment grows over time as the robot explores the environment. The ever-growing map prevents long-term mapping, especially in large-scale environments. In this paper, we develop a compact cognitive mapping approach inspired by neurobiological experiments. Mimicking the firing activities of neighborhood cells, neighborhood fields determined by movement information, i.e. translation and rotation, are modeled to describe one of the distinct segments of the explored environment. The vertices with low neighborhood field activities are avoided to be added into the cognitive map. The optimization of the cognitive map is formulated as a robust non-linear least squares problem constrained by the transitions between vertices, and is numerically solved efficiently. According to the cognitive decision-making of place familiarity, loop closure edges are clustered depending on time intervals, and then batch global optimization of the cognitive map is performed to satisfy the combined constraint of the whole cluster. After the loop closure process, scene integration is performed, in which revisited vertices are removed subsequently to further reduce the size of the cognitive map. The compact cognitive mapping approach is tested on a monocular visual SLAM system in a naturalistic maze for a biomimetic animated robot. Our results demonstrate that the proposed method largely restricts the growth of the size of the cognitive map over time, and meanwhile, the compact cognitive map correctly represents the overall layout of the environment. The compact cognitive mapping method is well suitable for the representation of large-scale environments to achieve long-term robot navigation.

摘要

在许多同步定位与地图构建(SLAM)系统中,随着机器人对环境的探索,环境地图会随时间不断增长。不断增长的地图阻碍了长期地图构建,尤其是在大规模环境中。在本文中,我们受神经生物学实验启发,开发了一种紧凑认知地图构建方法。模仿邻域细胞的放电活动,由运动信息(即平移和旋转)确定的邻域场被建模,以描述已探索环境的一个独特部分。避免将邻域场活动低的顶点添加到认知地图中。认知地图的优化被表述为一个受顶点间转换约束的鲁棒非线性最小二乘问题,并通过数值方法高效求解。根据位置熟悉度的认知决策,闭环边根据时间间隔进行聚类,然后对认知地图进行批量全局优化,以满足整个聚类的组合约束。在闭环过程之后,进行场景整合,在此过程中随后移除重新访问的顶点,以进一步减小认知地图的大小。紧凑认知地图构建方法在一个自然主义迷宫中的单目视觉SLAM系统上针对一个仿生动画机器人进行了测试。我们的结果表明,所提出的方法在很大程度上限制了认知地图大小随时间的增长,同时,紧凑认知地图正确地表示了环境的整体布局。紧凑认知地图构建方法非常适合表示大规模环境,以实现机器人的长期导航。

相似文献

1
A brain-inspired compact cognitive mapping system.
Cogn Neurodyn. 2021 Feb;15(1):91-101. doi: 10.1007/s11571-020-09621-6. Epub 2020 Jul 30.
2
Video data for the cognitive mapping process of NeuroBayesSLAM system.
Data Brief. 2020 Apr 30;30:105637. doi: 10.1016/j.dib.2020.105637. eCollection 2020 Jun.
4
An Improved Deep Residual Network-Based Semantic Simultaneous Localization and Mapping Method for Monocular Vision Robot.
Comput Intell Neurosci. 2020 Feb 10;2020:7490840. doi: 10.1155/2020/7490840. eCollection 2020.
5
Large-Scale LiDAR SLAM with Factor Graph Optimization on High-Level Geometric Features.
Sensors (Basel). 2021 May 15;21(10):3445. doi: 10.3390/s21103445.
6
Exploiting semantic information in a spiking neural SLAM system.
Front Neurosci. 2023 Jul 5;17:1190515. doi: 10.3389/fnins.2023.1190515. eCollection 2023.
7
AEKF-SLAM: A New Algorithm for Robotic Underwater Navigation.
Sensors (Basel). 2017 May 21;17(5):1174. doi: 10.3390/s17051174.
8
SLAM algorithm applied to robotics assistance for navigation in unknown environments.
J Neuroeng Rehabil. 2010 Feb 17;7:10. doi: 10.1186/1743-0003-7-10.
9
NeuroSLAM: a brain-inspired SLAM system for 3D environments.
Biol Cybern. 2019 Dec;113(5-6):515-545. doi: 10.1007/s00422-019-00806-9. Epub 2019 Sep 30.
10
Cognitive Mapping Based on Conjunctive Representations of Space and Movement.
Front Neurorobot. 2017 Nov 22;11:61. doi: 10.3389/fnbot.2017.00061. eCollection 2017.

引用本文的文献

1
Formation of cognitive maps in large-scale environments by sensorimotor integration.
Cogn Neurodyn. 2025 Dec;19(1):19. doi: 10.1007/s11571-024-10200-2. Epub 2025 Jan 9.
2
Learning dynamic cognitive map with autonomous navigation.
Front Comput Neurosci. 2024 Dec 11;18:1498160. doi: 10.3389/fncom.2024.1498160. eCollection 2024.
3
A spatial transformation-based CAN model for information integration within grid cell modules.
Cogn Neurodyn. 2024 Aug;18(4):1861-1876. doi: 10.1007/s11571-023-10047-z. Epub 2024 Jan 2.
4
Innate Orientating Behavior of a Multi-Legged Robot Driven by the Neural Circuits of .
Biomimetics (Basel). 2024 May 23;9(6):314. doi: 10.3390/biomimetics9060314.
5
Modeling the grid cell activity based on cognitive space transformation.
Cogn Neurodyn. 2024 Jun;18(3):1227-1243. doi: 10.1007/s11571-023-09972-w. Epub 2023 Apr 20.
6
Bridging the gap between EEG and DCNNs reveals a fatigue mechanism of facial repetition suppression.
iScience. 2023 Nov 22;26(12):108501. doi: 10.1016/j.isci.2023.108501. eCollection 2023 Dec 15.
7
Entorhinal-hippocampal interactions lead to globally coherent representations of space.
Curr Res Neurobiol. 2022 Mar 21;3:100035. doi: 10.1016/j.crneur.2022.100035. eCollection 2022.

本文引用的文献

1
NeuroBayesSLAM: Neurobiologically inspired Bayesian integration of multisensory information for robot navigation.
Neural Netw. 2020 Jun;126:21-35. doi: 10.1016/j.neunet.2020.02.023. Epub 2020 Mar 4.
2
Cognitive Mapping Based on Conjunctive Representations of Space and Movement.
Front Neurorobot. 2017 Nov 22;11:61. doi: 10.3389/fnbot.2017.00061. eCollection 2017.
4
Speed cells in the medial entorhinal cortex.
Nature. 2015 Jul 23;523(7561):419-24. doi: 10.1038/nature14622. Epub 2015 Jul 15.
5
Place cells, grid cells, and memory.
Cold Spring Harb Perspect Biol. 2015 Feb 2;7(2):a021808. doi: 10.1101/cshperspect.a021808.
6
Time cells in the hippocampus: a new dimension for mapping memories.
Nat Rev Neurosci. 2014 Nov;15(11):732-44. doi: 10.1038/nrn3827. Epub 2014 Oct 1.
7
Hippocampal output area CA1 broadcasts a generalized novelty signal during an object-place recognition task.
Hippocampus. 2014 Jul;24(7):773-83. doi: 10.1002/hipo.22268. Epub 2014 Mar 21.
8
Hippocampal "time cells" bridge the gap in memory for discontiguous events.
Neuron. 2011 Aug 25;71(4):737-49. doi: 10.1016/j.neuron.2011.07.012.
10
Boundary vector cells in the subiculum of the hippocampal formation.
J Neurosci. 2009 Aug 5;29(31):9771-7. doi: 10.1523/JNEUROSCI.1319-09.2009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验