de Tinguy Daria, Verbelen Tim, Dhoedt Bart
Department of Engineering and Architecture, Ghent University/IMEC, Ghent, Belgium.
Verses, Los Angeles, CA, United States.
Front Comput Neurosci. 2024 Dec 11;18:1498160. doi: 10.3389/fncom.2024.1498160. eCollection 2024.
Inspired by animal navigation strategies, we introduce a novel computational model to navigate and map a space rooted in biologically inspired principles. Animals exhibit extraordinary navigation prowess, harnessing memory, imagination, and strategic decision-making to traverse complex and aliased environments adeptly. Our model aims to replicate these capabilities by incorporating a dynamically expanding cognitive map over predicted poses within an active inference framework, enhancing our agent's generative model plasticity to novelty and environmental changes. Through structure learning and active inference navigation, our model demonstrates efficient exploration and exploitation, dynamically expanding its model capacity in response to anticipated novel un-visited locations and updating the map given new evidence contradicting previous beliefs. Comparative analyses in mini-grid environments with the clone-structured cognitive graph model (CSCG), which shares similar objectives, highlight our model's ability to rapidly learn environmental structures within a single episode, with minimal navigation overlap. Our model achieves this without prior knowledge of observation and world dimensions, underscoring its robustness and efficacy in navigating intricate environments.
受动物导航策略的启发,我们引入了一种新颖的计算模型,该模型基于生物启发原则对空间进行导航和映射。动物展现出非凡的导航能力,利用记忆、想象力和战略决策来熟练穿越复杂且存在混淆的环境。我们的模型旨在通过在主动推理框架内纳入一个动态扩展的关于预测姿态的认知地图来复制这些能力,增强我们的智能体生成模型对新奇事物和环境变化的可塑性。通过结构学习和主动推理导航,我们的模型展示了高效的探索和利用能力,响应预期的未访问新位置动态扩展其模型容量,并根据与先前信念相矛盾的新证据更新地图。在具有相似目标的克隆结构认知图模型(CSCG)的迷你网格环境中进行的对比分析,突出了我们的模型在单个情节内快速学习环境结构的能力,且导航重叠最小。我们的模型在无需观察和世界维度先验知识的情况下实现了这一点,强调了其在复杂环境中导航的稳健性和有效性。