Suppr超能文献

核酸的胞质递送:可电离脂质纳米颗粒的情况。

Cytosolic delivery of nucleic acids: The case of ionizable lipid nanoparticles.

作者信息

Schlich Michele, Palomba Roberto, Costabile Gabriella, Mizrahy Shoshy, Pannuzzo Martina, Peer Dan, Decuzzi Paolo

机构信息

Fondazione Istituto Italiano di Tecnologia Laboratory of Nanotechnology for Precision Medicine Genoa Italy.

Department of Life and Environmental Sciences University of Cagliari Cagliari Italy.

出版信息

Bioeng Transl Med. 2021 Mar 20;6(2):e10213. doi: 10.1002/btm2.10213. eCollection 2021 May.

Abstract

Ionizable lipid nanoparticles (LNPs) are the most clinically advanced nano-delivery system for therapeutic nucleic acids. The great effort put in the development of ionizable lipids with increased in vivo potency brought LNPs from the laboratory benches to the FDA approval of patisiran in 2018 and the ongoing clinical trials for mRNA-based vaccines against SARS-CoV-2. Despite these success stories, several challenges remain in RNA delivery, including what is known as "endosomal escape." Reaching the cytosol is mandatory for unleashing the therapeutic activity of RNA molecules, as their accumulation in other intracellular compartments would simply result in efficacy loss. In LNPs, the ability of ionizable lipids to form destabilizing non-bilayer structures at acidic pH is recognized as the key for endosomal escape and RNA cytosolic delivery. This is motivating a surge in studies aiming at designing novel ionizable lipids with improved biodegradation and safety profiles. In this work, we describe the journey of RNA-loaded LNPs across multiple intracellular barriers, from the extracellular space to the cytosol. In silico molecular dynamics modeling, in vitro high-resolution microscopy analyses, and in vivo imaging data are systematically reviewed to distill out the regulating mechanisms underlying the endosomal escape of RNA. Finally, a comparison with strategies employed by enveloped viruses to deliver their genetic material into cells is also presented. The combination of a multidisciplinary analytical toolkit for endosomal escape quantification and a nature-inspired design could foster the development of future LNPs with improved cytosolic delivery of nucleic acids.

摘要

可电离脂质纳米颗粒(LNPs)是用于治疗性核酸的临床上最先进的纳米递送系统。在开发具有更高体内效力的可电离脂质方面所做的巨大努力,使LNPs从实验室工作台走向了2018年帕替拉韦获得美国食品药品监督管理局(FDA)批准以及针对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的基于信使核糖核酸(mRNA)的疫苗正在进行的临床试验。尽管有这些成功案例,但在RNA递送方面仍存在一些挑战,包括所谓的“内体逃逸”。RNA分子要发挥治疗活性,必须进入细胞质,因为它们在其他细胞内区室中的积累只会导致药效丧失。在LNPs中,可电离脂质在酸性pH下形成不稳定非双层结构的能力被认为是内体逃逸和RNA细胞质递送的关键。这促使旨在设计具有更好生物降解性和安全性的新型可电离脂质的研究激增。在这项工作中,我们描述了负载RNA的LNPs跨越多个细胞内屏障,从细胞外空间到细胞质的过程。我们系统地回顾了计算机模拟分子动力学建模、体外高分辨率显微镜分析和体内成像数据,以提炼出RNA内体逃逸的调控机制。最后,还将其与包膜病毒用于将其遗传物质递送到细胞中的策略进行了比较。用于内体逃逸量化的多学科分析工具包与受自然启发的设计相结合,可能会促进未来LNPs的开发,以改善核酸的细胞质递送。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31fd/8126815/ab9ce7d38371/BTM2-6-e10213-g009.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验