Laboratory of Physiology of Behavior, Department of Comparative Medicine, Yale School of Medicine, New Haven, United States.
Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
Elife. 2021 Mar 31;10:e59161. doi: 10.7554/eLife.59161.
Mice emit ultrasonic vocalizations (USVs) that communicate socially relevant information. To detect and classify these USVs, here we describe VocalMat. VocalMat is a software that uses image-processing and differential geometry approaches to detect USVs in audio files, eliminating the need for user-defined parameters. VocalMat also uses computational vision and machine learning methods to classify USVs into distinct categories. In a data set of >4000 USVs emitted by mice, VocalMat detected over 98% of manually labeled USVs and accurately classified ≈86% of the USVs out of 11 USV categories. We then used dimensionality reduction tools to analyze the probability distribution of USV classification among different experimental groups, providing a robust method to quantify and qualify the vocal repertoire of mice. Thus, VocalMat makes it possible to perform automated, accurate, and quantitative analysis of USVs without the need for user inputs, opening the opportunity for detailed and high-throughput analysis of this behavior.
老鼠会发出传达社交相关信息的超声波(USVs)。为了检测和分类这些 USVs,我们在此描述了 VocalMat。VocalMat 是一款软件,它使用图像处理和微分几何方法来检测音频文件中的 USVs,无需用户定义参数。VocalMat 还使用计算视觉和机器学习方法将 USVs 分类为不同的类别。在一个由 >4000 只老鼠发出的 USVs 数据集里,VocalMat 检测到了超过 98%的手动标记 USVs,并且准确地将 >11 个 USV 类别中的约 86%的 USVs 进行了分类。然后,我们使用降维工具来分析不同实验组之间 USV 分类的概率分布,为量化和定性老鼠的叫声提供了一种稳健的方法。因此,VocalMat 使得无需用户输入即可进行自动、准确和定量的 USVs 分析成为可能,为这种行为的详细和高通量分析开辟了机会。