Suppr超能文献

MESNet:一种用于在长视频中检测多尺度微表情区间的卷积神经网络。

MESNet: A Convolutional Neural Network for Spotting Multi-Scale Micro-Expression Intervals in Long Videos.

出版信息

IEEE Trans Image Process. 2021;30:3956-3969. doi: 10.1109/TIP.2021.3064258. Epub 2021 Apr 1.

Abstract

Micro-expression spotting is a fundamental step in the micro-expression analysis. This paper proposes a novel network based convolutional neural network (CNN) for spotting multi-scale spontaneous micro-expression intervals in long videos. We named the network as Micro-Expression Spotting Network (MESNet). It is composed of three modules. The first module is a 2+1D Spatiotemporal Convolutional Network, which uses 2D convolution to extract spatial features and 1D convolution to extract temporal features. The second module is a Clip Proposal Network, which gives some proposed micro-expression clips. The last module is a Classification Regression Network, which classifies the proposed clips to micro-expression or not, and further regresses their temporal boundaries. We also propose a novel evaluation metric for spotting micro-expression. Extensive experiments have been conducted on the two long video datasets: CAS(ME) and SAMM, and the leave-one-subject-out cross-validation is used to evaluate the spotting performance. Results show that the proposed MESNet effectively enhances the F1-score metric. And comparative results show the proposed MESNet has achieved a good performance, which outperforms other state-of-the-art methods, especially in the SAMM dataset.

摘要

微表情定位是微表情分析的基本步骤。本文提出了一种新的基于卷积神经网络(CNN)的方法,用于在长视频中定位多尺度的自发微表情区间。我们将该网络命名为微表情定位网络(MESNet)。它由三个模块组成。第一个模块是 2+1D 时空卷积网络,它使用 2D 卷积来提取空间特征,使用 1D 卷积来提取时间特征。第二个模块是剪辑提议网络,它给出了一些建议的微表情剪辑。最后一个模块是分类回归网络,它将提议的剪辑分类为微表情或非微表情,并进一步回归它们的时间边界。我们还提出了一种新的微表情定位评估指标。在两个长视频数据集 CAS(ME) 和 SAMM 上进行了广泛的实验,使用留一受试者交叉验证来评估定位性能。结果表明,所提出的 MESNet 有效地提高了 F1 分数指标。对比结果表明,所提出的 MESNet 取得了良好的性能,优于其他最先进的方法,特别是在 SAMM 数据集上。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验