Suppr超能文献

基于柯西和贪婪莱维变异的蚁群优化算法在 COVID-19 多层 X 射线图像分割中的应用。

Ant colony optimization with Cauchy and greedy Levy mutations for multilevel COVID 19 X-ray image segmentation.

机构信息

College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.

College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang, 325035, China.

出版信息

Comput Biol Med. 2021 Sep;136:104609. doi: 10.1016/j.compbiomed.2021.104609. Epub 2021 Jul 3.

Abstract

This paper focuses on the study of multilevel COVID-19 X-ray image segmentation based on swarm intelligence optimization to improve the diagnostic level of COVID-19. We present a new ant colony optimization with the Cauchy mutation and the greedy Levy mutation, termed CLACO, for continuous domains. Specifically, the Cauchy mutation is applied to the end phase of ant foraging in CLACO to enhance its searchability and to boost its convergence rate. The greedy Levy mutation is applied to the optimal ant individuals to confer an improved ability to jump out of the local optimum. Furthermore, this paper develops a novel CLACO-based multilevel image segmentation method, termed CLACO-MIS. Using 2D Kapur's entropy as the CLACO fitness function based on 2D histograms consisting of non-local mean filtered images and grayscale images, CLACO-MIS was successfully applied to the segmentation of COVID-19 X-ray images. A comparison of CLACO with some relevant variants and other excellent peers on 30 benchmark functions from IEEE CEC2014 demonstrates the superior performance of CLACO in terms of search capability, and convergence speed as well as ability to jump out of the local optimum. Moreover, CLACO-MIS was shown to have a better segmentation effect and a stronger adaptability at different threshold levels than other methods in performing segmentation experiments of COVID-19 X-ray images. Therefore, CLACO-MIS has great potential to be used for improving the diagnostic level of COVID-19. This research will host a webservice for any question at https://aliasgharheidari.com.

摘要

本文专注于基于群体智能优化的多层 COVID-19 X 射线图像分割研究,以提高 COVID-19 的诊断水平。我们提出了一种新的蚁群优化算法,即具有柯西变异和贪婪莱维变异的 CLACO,用于连续域。具体来说,柯西变异应用于 CLACO 中蚂蚁觅食的末期,以增强其搜索能力并提高收敛速度。贪婪莱维变异应用于最优蚂蚁个体,以提高跳出局部最优的能力。此外,本文开发了一种基于 CLACO 的新型多层图像分割方法,称为 CLACO-MIS。基于二维直方图(包含非局部均值滤波图像和灰度图像)的 2D Kapur 熵作为 CLACO 适应度函数,CLACO-MIS 成功应用于 COVID-19 X 射线图像的分割。在 IEEE CEC2014 的 30 个基准函数上,将 CLACO 与一些相关变体和其他优秀算法进行比较,证明了 CLACO 在搜索能力、收敛速度和跳出局部最优的能力方面具有优越的性能。此外,在 COVID-19 X 射线图像分割实验中,CLACO-MIS 表现出比其他方法更好的分割效果和更强的适应不同阈值水平的能力。因此,CLACO-MIS 有望用于提高 COVID-19 的诊断水平。任何问题都可以在 https://aliasgharheidari.com 上访问我们的服务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/943f/8254401/a54f30546751/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验