Suppr超能文献

BNAS:使用广泛可扩展架构的高效神经架构搜索。

BNAS: Efficient Neural Architecture Search Using Broad Scalable Architecture.

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Sep;33(9):5004-5018. doi: 10.1109/TNNLS.2021.3067028. Epub 2022 Aug 31.

Abstract

Efficient neural architecture search (ENAS) achieves novel efficiency for learning architecture with high-performance via parameter sharing and reinforcement learning (RL). In the phase of architecture search, ENAS employs deep scalable architecture as search space whose training process consumes most of the search cost. Moreover, time-consuming model training is proportional to the depth of deep scalable architecture. Through experiments using ENAS on CIFAR-10, we find that layer reduction of scalable architecture is an effective way to accelerate the search process of ENAS but suffers from a prohibitive performance drop in the phase of architecture estimation. In this article, we propose a broad neural architecture search (BNAS) where we elaborately design broad scalable architecture dubbed broad convolutional neural network (BCNN) to solve the above issue. On the one hand, the proposed broad scalable architecture has fast training speed due to its shallow topology. Moreover, we also adopt RL and parameter sharing used in ENAS as the optimization strategy of BNAS. Hence, the proposed approach can achieve higher search efficiency. On the other hand, the broad scalable architecture extracts multi-scale features and enhancement representations, and feeds them into global average pooling (GAP) layer to yield more reasonable and comprehensive representations. Therefore, the performance of broad scalable architecture can be promised. In particular, we also develop two variants for BNAS that modify the topology of BCNN. In order to verify the effectiveness of BNAS, several experiments are performed and experimental results show that 1) BNAS delivers 0.19 days which is 2.37× less expensive than ENAS who ranks the best in RL-based NAS approaches; 2) compared with small-size (0.5 million parameters) and medium-size (1.1 million parameters) models, the architecture learned by BNAS obtains state-of-the-art performance (3.58% and 3.24% test error) on CIFAR-10; and 3) the learned architecture achieves 25.3% top-1 error on ImageNet just using 3.9 million parameters.

摘要

高效神经架构搜索(ENAS)通过参数共享和强化学习(RL)实现了具有高性能的学习架构的新颖效率。在架构搜索阶段,ENAS 采用深可扩展架构作为搜索空间,其训练过程消耗了大部分搜索成本。此外,耗时的模型训练与深可扩展架构的深度成正比。通过在 CIFAR-10 上使用 ENAS 进行实验,我们发现可扩展架构的层减少是加速 ENAS 搜索过程的有效方法,但在架构估计阶段会导致性能显著下降。在本文中,我们提出了一种广泛的神经架构搜索(BNAS),其中我们精心设计了一种名为广泛卷积神经网络(BCNN)的广泛可扩展架构来解决上述问题。一方面,由于拓扑结构较浅,所提出的广泛可扩展架构具有快速的训练速度。此外,我们还采用了 ENAS 中使用的 RL 和参数共享作为 BNAS 的优化策略。因此,所提出的方法可以实现更高的搜索效率。另一方面,广泛的可扩展架构提取多尺度特征和增强表示,并将它们馈送到全局平均池化(GAP)层,以产生更合理和全面的表示。因此,可以保证广泛的可扩展架构的性能。特别是,我们还为 BNAS 开发了两种变体,修改了 BCNN 的拓扑结构。为了验证 BNAS 的有效性,进行了多项实验,实验结果表明:1)BNAS 仅需 0.19 天,比 RL 为基础的 NAS 方法中排名最高的 ENAS 便宜 2.37 倍;2)与小尺寸(0.5 百万个参数)和中尺寸(1.1 百万个参数)模型相比,BNAS 学习的架构在 CIFAR-10 上实现了最先进的性能(测试错误率分别为 3.58%和 3.24%);3)所学习的架构仅使用 390 万个参数即可在 ImageNet 上达到 25.3%的 top-1 错误率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验