School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Key Laboratory of Security Technology for Industrial Cyberspace, Zhenjiang, Jiangsu, 212013, China.
School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Key Laboratory of Security Technology for Industrial Cyberspace, Zhenjiang, Jiangsu, 212013, China.
Neural Netw. 2020 Mar;123:305-316. doi: 10.1016/j.neunet.2019.12.005. Epub 2019 Dec 16.
The efforts devoted to manually increasing the width and depth of convolutional neural network (CNN) usually require a large amount of time and expertise. It has stimulated a rising demand of neural architecture search (NAS) over these years. However, most popular NAS approaches solely optimize for low prediction error without penalizing high structure complexity. To this end, this paper proposes MOPSO/D-Net, a CNN architecture search method with multiobjective particle swarm optimization based on decomposition (MOPSO/D). The main goal is to reformulate NAS as a multiobjective evolutionary optimization problem, where the optimal architecture is learned by minimizing two conflicting objectives, namely the error rate of classification and number of parameters of the network. Along with the hybrid binary encoding and adaptive penalty-based boundary intersection, an improved MOPSO/D is further proposed to solve the formulated multiobjective NAS and provide diverse tradeoff solutions. Experimental studies verify the effectiveness of MOPSO/D-Net compared with current manual and automated CNN generation methods. The proposed algorithm achieves impressive classification performance with a small number of parameters on each of two benchmark datasets, particularly, 0.4% error rate with 0.16M params on MNIST and 5.88% error rate with 8.1M params on CIFAR-10, respectively.
致力于手动增加卷积神经网络 (CNN) 的宽度和深度的工作通常需要大量的时间和专业知识。这激发了近年来对神经架构搜索 (NAS) 的需求。然而,大多数流行的 NAS 方法仅针对低预测误差进行优化,而不惩罚高结构复杂性。为此,本文提出了 MOPSO/D-Net,这是一种基于分解的多目标粒子群优化的 CNN 架构搜索方法 (MOPSO/D)。主要目标是将 NAS 重新表述为一个多目标进化优化问题,通过最小化两个冲突目标,即分类错误率和网络参数数量,来学习最优架构。同时,通过混合二进制编码和自适应惩罚边界交叉,进一步提出了改进的 MOPSO/D 来解决所提出的多目标 NAS,并提供多种权衡解决方案。实验研究验证了 MOPSO/D-Net 与当前手动和自动化 CNN 生成方法相比的有效性。所提出的算法在两个基准数据集上的每个数据集上都具有少量参数实现了令人印象深刻的分类性能,分别在 MNIST 上达到 0.4%的错误率和 0.16M 参数,在 CIFAR-10 上达到 5.88%的错误率和 8.1M 参数。