Suppr超能文献

免疫肽组学和免疫信息学在抗原呈递特性分析和 BoLA-DR 呈递肽及表位的合理鉴定中的综合应用。

Integral Use of Immunopeptidomics and Immunoinformatics for the Characterization of Antigen Presentation and Rational Identification of BoLA-DR-Presented Peptides and Epitopes.

机构信息

Ribeirão Preto College of Nursing, University of São Paulo, Av Bandeirantes, Ribeirão Preto, Brazil.

Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.

出版信息

J Immunol. 2021 May 15;206(10):2489-2497. doi: 10.4049/jimmunol.2001409. Epub 2021 Mar 31.

Abstract

MHC peptide binding and presentation is the most selective event defining the landscape of T cell epitopes. Consequently, understanding the diversity of MHC alleles in a given population and the parameters that define the set of ligands that can be bound and presented by each of these alleles (the immunopeptidome) has an enormous impact on our capacity to predict and manipulate the potential of protein Ags to elicit functional T cell responses. Liquid chromatography-mass spectrometry analysis of MHC-eluted ligand data has proven to be a powerful technique for identifying such peptidomes, and methods integrating such data for prediction of Ag presentation have reached a high level of accuracy for both MHC class I and class II. In this study, we demonstrate how these techniques and prediction methods can be readily extended to the bovine leukocyte Ag class II DR locus (BoLA-DR). BoLA-DR binding motifs were characterized by eluted ligand data derived from bovine cell lines expressing a range of DRB3 alleles prevalent in Holstein-Friesian populations. The model generated (NetBoLAIIpan, available as a Web server at www.cbs.dtu.dk/services/NetBoLAIIpan) was shown to have unprecedented predictive power to identify known BoLA-DR-restricted CD4 epitopes. In summary, the results demonstrate the power of an integrated approach combining advanced mass spectrometry peptidomics with immunoinformatics for characterization of the BoLA-DR Ag presentation system and provide a prediction tool that can be used to assist in rational evaluation and selection of bovine CD4 T cell epitopes.

摘要

MHC 肽结合和呈递是定义 T 细胞表位景观的最具选择性事件。因此,了解特定人群中 MHC 等位基因的多样性以及定义每个等位基因可结合和呈递的配体(免疫肽组)的参数,对我们预测和操纵蛋白抗原引发功能性 T 细胞反应的潜力具有巨大影响。MHC 洗脱配体数据的液相色谱-质谱分析已被证明是鉴定此类肽组的有力技术,并且整合此类数据用于预测抗原呈递的方法已经达到了 MHC 类 I 和 II 的高精度。在这项研究中,我们展示了如何将这些技术和预测方法轻松扩展到牛白细胞抗原 II 类 DR 基因座 (BoLA-DR)。通过表达广泛存在于荷斯坦-弗里森牛种群中的一系列 DRB3 等位基因的牛细胞系的洗脱配体数据来表征 BoLA-DR 结合基序。生成的模型 (NetBoLAIIpan,可作为 Web 服务器在 www.cbs.dtu.dk/services/NetBoLAIIpan 上获得) 被证明具有前所未有的预测能力,可以识别已知的 BoLA-DR 限制性 CD4 表位。总之,这些结果证明了结合先进的质谱肽组学和免疫信息学来描述 BoLA-DR 抗原呈递系统的综合方法的强大功能,并提供了一个预测工具,可用于辅助牛 CD4 T 细胞表位的合理评估和选择。

相似文献

5
Determination of a Predictive Cleavage Motif for Eluted Major Histocompatibility Complex Class II Ligands.
Front Immunol. 2018 Aug 6;9:1795. doi: 10.3389/fimmu.2018.01795. eCollection 2018.
6
NNAlign_MA; MHC Peptidome Deconvolution for Accurate MHC Binding Motif Characterization and Improved T-cell Epitope Predictions.
Mol Cell Proteomics. 2019 Dec;18(12):2459-2477. doi: 10.1074/mcp.TIR119.001658. Epub 2019 Oct 2.
7
Designing bovine T cell vaccines via reverse immunology.
Ticks Tick Borne Dis. 2012 Jun;3(3):188-92. doi: 10.1016/j.ttbdis.2011.12.001. Epub 2012 Jan 9.
9
Characterization of binding specificities of bovine leucocyte class I molecules: impacts for rational epitope discovery.
Immunogenetics. 2014 Dec;66(12):705-18. doi: 10.1007/s00251-014-0802-5. Epub 2014 Sep 4.

引用本文的文献

1
Advances of computational methods enhance the development of multi-epitope vaccines.
Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbaf055.
2
Immunopeptidomics of Serovar -Infected Pig Macrophages Genotyped for Class II Molecules.
Biology (Basel). 2024 Oct 16;13(10):832. doi: 10.3390/biology13100832.
4
How to Predict Binding Specificity and Ligands for New MHC-II Alleles with MixMHC2pred.
Methods Mol Biol. 2024;2809:215-235. doi: 10.1007/978-1-0716-3874-3_14.
6
New light on the HLA-DR immunopeptidomic landscape.
J Leukoc Biol. 2024 Apr 29;115(5):913-925. doi: 10.1093/jleuko/qiae007.
9
More than Three Decades of Bm86: What We Know and Where to Go.
Pathogens. 2023 Aug 22;12(9):1071. doi: 10.3390/pathogens12091071.
10
Immunopeptidomic Analysis of BoLA-I and BoLA-DR Presented Peptides from Infected Cells.
Vaccines (Basel). 2022 Nov 11;10(11):1907. doi: 10.3390/vaccines10111907.

本文引用的文献

2
Immunopeptidomic Data Integration to Artificial Neural Networks Enhances Protein-Drug Immunogenicity Prediction.
Front Immunol. 2020 Jun 23;11:1304. doi: 10.3389/fimmu.2020.01304. eCollection 2020.
4
Improved Prediction of MHC II Antigen Presentation through Integration and Motif Deconvolution of Mass Spectrometry MHC Eluted Ligand Data.
J Proteome Res. 2020 Jun 5;19(6):2304-2315. doi: 10.1021/acs.jproteome.9b00874. Epub 2020 Apr 30.
6
Identification of antigens presented by MHC for vaccines against tuberculosis.
NPJ Vaccines. 2020 Jan 3;5(1):2. doi: 10.1038/s41541-019-0148-y. eCollection 2020.
7
A large peptidome dataset improves HLA class I epitope prediction across most of the human population.
Nat Biotechnol. 2020 Feb;38(2):199-209. doi: 10.1038/s41587-019-0322-9. Epub 2019 Dec 16.
8
Robust prediction of HLA class II epitopes by deep motif deconvolution of immunopeptidomes.
Nat Biotechnol. 2019 Nov;37(11):1283-1286. doi: 10.1038/s41587-019-0289-6. Epub 2019 Oct 14.
9
NNAlign_MA; MHC Peptidome Deconvolution for Accurate MHC Binding Motif Characterization and Improved T-cell Epitope Predictions.
Mol Cell Proteomics. 2019 Dec;18(12):2459-2477. doi: 10.1074/mcp.TIR119.001658. Epub 2019 Oct 2.
10
Defining HLA-II Ligand Processing and Binding Rules with Mass Spectrometry Enhances Cancer Epitope Prediction.
Immunity. 2019 Oct 15;51(4):766-779.e17. doi: 10.1016/j.immuni.2019.08.012. Epub 2019 Sep 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验