Li Yuan-Kuei, Hsu Huan-Ming, Lin Meng-Chiung, Chang Chi-Wen, Chu Chi-Ming, Chang Yu-Jia, Yu Jyh-Cherng, Chen Chien-Ting, Jian Chen-En, Sun Chien-An, Chen Kang-Hua, Kuo Ming-Hao, Cheng Chia-Shiang, Chang Ya-Ting, Wu Yi-Syuan, Wu Hao-Yi, Yang Ya-Ting, Lin Chen, Lin Hung-Che, Hu Je-Ming, Chang Yu-Tien
Division of Colorectal Surgery, Department of Surgery, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan.
Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan.
Sci Rep. 2021 Mar 31;11(1):7268. doi: 10.1038/s41598-021-84995-z.
Genetic co-expression network (GCN) analysis augments the understanding of breast cancer (BC). We aimed to propose GCN-based modeling for BC relapse-free survival (RFS) prediction and to discover novel biomarkers. We used GCN and Cox proportional hazard regression to create various prediction models using mRNA microarray of 920 tumors and conduct external validation using independent data of 1056 tumors. GCNs of 34 identified candidate genes were plotted in various sizes. Compared to the reference model, the genetic predictors selected from bigger GCNs composed better prediction models. The prediction accuracy and AUC of 3 ~ 15-year RFS are 71.0-81.4% and 74.6-78% respectively (rfm, ACC 63.2-65.5%, AUC 61.9-74.9%). The hazard ratios of risk scores of developing relapse ranged from 1.89 ~ 3.32 (p < 10) over all models under the control of the node status. External validation showed the consistent finding. We found top 12 co-expressed genes are relative new or novel biomarkers that have not been explored in BC prognosis or other cancers until this decade. GCN-based modeling creates better prediction models and facilitates novel genes exploration on BC prognosis.
基因共表达网络(GCN)分析增强了对乳腺癌(BC)的理解。我们旨在提出基于GCN的模型用于预测乳腺癌无复发生存期(RFS)并发现新的生物标志物。我们使用GCN和Cox比例风险回归,利用920个肿瘤的mRNA微阵列创建各种预测模型,并使用1056个肿瘤的独立数据进行外部验证。绘制了34个已鉴定候选基因的GCN,大小各异。与参考模型相比,从较大GCN中选择的基因预测因子构成了更好的预测模型。3至15年RFS的预测准确率和AUC分别为71.0 - 81.4%和74.6 - 78%(随机森林模型,ACC 63.2 - 65.5%,AUC 61.9 - 74.9%)。在节点状态控制下,所有模型中复发风险评分的风险比范围为1.89至3.32(p < 10)。外部验证显示了一致的结果。我们发现排名前12的共表达基因是相对新的或尚未在本十年之前的乳腺癌预后或其他癌症中探索过的新生物标志物。基于GCN的建模创建了更好的预测模型,并促进了对乳腺癌预后新基因的探索。