Suppr超能文献

通过组学网络探索胶质瘤异质性:从基因网络发现到因果洞察和患者分层。

Exploring glioma heterogeneity through omics networks: from gene network discovery to causal insights and patient stratification.

作者信息

Kastendiek Nina, Coletti Roberta, Gross Thilo, Lopes Marta B

机构信息

Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, 26129, Germany.

Center for Mathematics and Applications (NOVA Math), NOVA School of Science and Technology (NOVA FCT), Caparica, 2829-516, Portugal.

出版信息

BioData Min. 2024 Dec 18;17(1):56. doi: 10.1186/s13040-024-00411-y.

Abstract

Gliomas are primary malignant brain tumors with a typically poor prognosis, exhibiting significant heterogeneity across different cancer types. Each glioma type possesses distinct molecular characteristics determining patient prognosis and therapeutic options. This study aims to explore the molecular complexity of gliomas at the transcriptome level, employing a comprehensive approach grounded in network discovery. The graphical lasso method was used to estimate a gene co-expression network for each glioma type from a transcriptomics dataset. Causality was subsequently inferred from correlation networks by estimating the Jacobian matrix. The networks were then analyzed for gene importance using centrality measures and modularity detection, leading to the selection of genes that might play an important role in the disease. To explore the pathways and biological functions these genes are involved in, KEGG and Gene Ontology (GO) enrichment analyses on the disclosed gene sets were performed, highlighting the significance of the genes selected across several relevent pathways and GO terms. Spectral clustering based on patient similarity networks was applied to stratify patients into groups with similar molecular characteristics and to assess whether the resulting clusters align with the diagnosed glioma type. The results presented highlight the ability of the proposed methodology to uncover relevant genes associated with glioma intertumoral heterogeneity. Further investigation might encompass biological validation of the putative biomarkers disclosed.

摘要

胶质瘤是原发性恶性脑肿瘤,预后通常较差,在不同癌症类型中表现出显著的异质性。每种胶质瘤类型都具有决定患者预后和治疗选择的独特分子特征。本研究旨在通过基于网络发现的综合方法,在转录组水平上探索胶质瘤的分子复杂性。使用图形套索方法从转录组学数据集中估计每种胶质瘤类型的基因共表达网络。随后通过估计雅可比矩阵从相关网络中推断因果关系。然后使用中心性度量和模块性检测对网络进行基因重要性分析,从而选择可能在该疾病中起重要作用的基因。为了探索这些基因所涉及的途径和生物学功能,对公开的基因集进行了KEGG和基因本体(GO)富集分析,突出了在多个相关途径和GO术语中所选基因的重要性。基于患者相似性网络的谱聚类被应用于将患者分层为具有相似分子特征的组,并评估所得聚类是否与诊断出的胶质瘤类型一致。所呈现的结果突出了所提出方法揭示与胶质瘤肿瘤间异质性相关的相关基因的能力。进一步的研究可能包括对所公开的假定生物标志物进行生物学验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3059/11657291/045b3b4fd973/13040_2024_411_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验