Inserm U1194, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.
University of Montpellier, Montpellier, France.
Sci Rep. 2021 Mar 31;11(1):7272. doi: 10.1038/s41598-021-86544-0.
Modular response analysis (MRA) is a widely used inference technique developed to uncover directions and strengths of connections in molecular networks under a steady-state condition by means of perturbation experiments. We devised several extensions of this methodology to search genomic data for new associations with a biological network inferred by MRA, to improve the predictive accuracy of MRA-inferred networks, and to estimate confidence intervals of MRA parameters from datasets with low numbers of replicates. The classical MRA computations and their extensions were implemented in a freely available R package called aiMeRA ( https://github.com/bioinfo-ircm/aiMeRA/ ). We illustrated the application of our package by assessing the crosstalk between estrogen and retinoic acid receptors, two nuclear receptors implicated in several hormone-driven cancers, such as breast cancer. Based on new data generated for this study, our analysis revealed potential cross-inhibition mediated by the shared corepressors NRIP1 and LCoR. We designed aiMeRA for non-specialists and to allow biologists to perform their own analyses.
模块响应分析(MRA)是一种广泛使用的推断技术,旨在通过扰动实验揭示在稳态条件下分子网络中连接的方向和强度。我们设计了几种这种方法的扩展,以便在基因组数据中搜索与 MRA 推断的生物网络的新关联,提高 MRA 推断网络的预测准确性,并从复制次数较少的数据集估计 MRA 参数的置信区间。经典的 MRA 计算及其扩展在一个名为 aiMeRA(https://github.com/bioinfo-ircm/aiMeRA/)的免费 R 包中实现。我们通过评估雌激素和视黄酸受体之间的串扰来说明我们的包的应用,这两种核受体参与了几种激素驱动的癌症,如乳腺癌。基于为此研究生成的新数据,我们的分析揭示了由共享的共抑制剂 NRIP1 和 LCoR 介导的潜在的交叉抑制。我们设计了 aiMeRA 供非专业人士使用,并允许生物学家进行自己的分析。