Suppr超能文献

肾细胞癌的亚组独立映射——机器学习揭示超越组织病理学界限的预后线粒体基因特征。

Subgroup-Independent Mapping of Renal Cell Carcinoma-Machine Learning Reveals Prognostic Mitochondrial Gene Signature Beyond Histopathologic Boundaries.

作者信息

Marquardt André, Solimando Antonio Giovanni, Kerscher Alexander, Bittrich Max, Kalogirou Charis, Kübler Hubert, Rosenwald Andreas, Bargou Ralf, Kollmannsberger Philip, Schilling Bastian, Meierjohann Svenja, Krebs Markus

机构信息

Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany.

Institute of Pathology, University of Würzburg, Würzburg, Germany.

出版信息

Front Oncol. 2021 Mar 15;11:621278. doi: 10.3389/fonc.2021.621278. eCollection 2021.

Abstract

Renal cell carcinoma (RCC) is divided into three major histopathologic groups-clear cell (ccRCC), papillary (pRCC) and chromophobe RCC (chRCC). We performed a comprehensive re-analysis of publicly available RCC datasets from the TCGA (The Cancer Genome Atlas) database, thereby combining samples from all three subgroups, for an exploratory transcriptome profiling of RCC subgroups. We used FPKM (fragments per kilobase per million) files derived from the ccRCC, pRCC and chRCC cohorts of the TCGA database, representing transcriptomic data of 891 patients. Using principal component analysis, we visualized datasets as t-SNE plot for cluster detection. Clusters were characterized by machine learning, resulting gene signatures were validated by correlation analyses in the TCGA dataset and three external datasets (ICGC RECA-EU, CPTAC-3-Kidney, and GSE157256). Many RCC samples co-clustered according to histopathology. However, a substantial number of samples clustered independently from histopathologic origin ()-demonstrating divergence between histopathology and transcriptomic data. Further analyses of via machine learning revealed a predominant mitochondrial gene signature-a trait previously known for chRCC-across all histopathologic subgroups. Additionally, ccRCC samples from presented an inverse correlation of mitochondrial and angiogenesis-related genes in the TCGA and in three external validation cohorts. Moreover, affiliation was associated with a highly significant shorter overall survival for patients with ccRCC-and a highly significant longer overall survival for chRCC patients. Pan-RCC clustering according to RNA-sequencing data revealed a distinct histology-independent subgroup characterized by strengthened mitochondrial and weakened angiogenesis-related gene signatures. Moreover, affiliation to went along with a significantly shorter overall survival for ccRCC and a longer overall survival for chRCC patients. Further research could offer a therapy stratification by specifically addressing the mitochondrial metabolism of such tumors and its microenvironment.

摘要

肾细胞癌(RCC)分为三大组织病理学类型——透明细胞型(ccRCC)、乳头状型(pRCC)和嫌色细胞型肾细胞癌(chRCC)。我们对来自TCGA(癌症基因组图谱)数据库的公开可用RCC数据集进行了全面的重新分析,从而将来自所有三个亚组的样本合并起来,用于RCC亚组的探索性转录组分析。我们使用了源自TCGA数据库的ccRCC、pRCC和chRCC队列的FPKM(每百万碱基中每千碱基的片段数)文件,这些文件代表了891名患者的转录组数据。使用主成分分析,我们将数据集可视化为t-SNE图以进行聚类检测。通过机器学习对聚类进行特征描述,所得到的基因特征在TCGA数据集和三个外部数据集(ICGC RECA-EU、CPTAC-3-Kidney和GSE157256)中通过相关性分析进行验证。许多RCC样本根据组织病理学共同聚类。然而,相当数量的样本独立于组织病理学来源进行聚类()——这表明组织病理学和转录组数据之间存在差异。通过机器学习对(此处原文似乎有缺失内容)的进一步分析揭示了一个主要的线粒体基因特征——这是chRCC之前已知的一个特征——在所有组织病理学亚组中均存在。此外,来自(此处原文似乎有缺失内容)的ccRCC样本在TCGA和三个外部验证队列中呈现出线粒体和血管生成相关基因的负相关。此外,(此处原文似乎有缺失内容)归属与ccRCC患者显著更短的总生存期相关——而与chRCC患者显著更长的总生存期相关。根据RNA测序数据进行的泛RCC聚类揭示了一个独特的不依赖组织学的亚组,其特征是线粒体相关基因特征增强而血管生成相关基因特征减弱。此外,与(此处原文似乎有缺失内容)的归属与ccRCC患者显著更短的总生存期以及chRCC患者更长的总生存期相关。进一步的研究可以通过专门针对此类肿瘤及其微环境的线粒体代谢提供一种治疗分层方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad01/8005734/9b41b34f1ed1/fonc-11-621278-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验