Liu Maning, Ali-Löytty Harri, Hiltunen Arto, Sarlin Essi, Qudsia Syeda, Smått Jan-Henrik, Valden Mika, Vivo Paola
Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33014, Finland.
Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 692, Tampere, FI-33014, Finland.
Small. 2021 May;17(19):e2100101. doi: 10.1002/smll.202100101. Epub 2021 Apr 1.
The doping of halide perovskite nanocrystals (NCs) with manganese cations (Mn ) has recently enabled enhanced stability, novel optical properties, and modulated charge carrier dynamics of the NCs host. However, the influence of Mn doping on the synthetic routes and the band structures of the host has not yet been elucidated. Herein, it is demonstrated that Mn doping promotes a facile, safe, and low-hazard path toward the synthesis of ternary Cs Bi I NCs by effectively inhibiting the impurity phase (i.e., CsI) resulting from the decomposition of the intermediate Cs BiI product. Furthermore, it is observed that the deepening of the valence band level of the host NCs upon doping at Mn concentration levels varying from 0 to 18.5% (atomic ratio) with respect to the Bi content. As a result, the corresponding Mn-doped NCs solar cells show a higher open-circuit voltage and longer electron lifetime than those employing the undoped perovskite NCs. This work opens new insights on the role of Mn doping in the synthetic route and optoelectronic properties of lead-free halide perovskite NCs for still unexplored applications.
用锰阳离子(Mn)对卤化物钙钛矿纳米晶体(NCs)进行掺杂,近来已实现了增强稳定性、产生新颖光学性质以及调控NCs主体的电荷载流子动力学。然而,Mn掺杂对主体合成路线和能带结构的影响尚未阐明。在此,证明了Mn掺杂通过有效抑制由中间产物Cs₃Bi₂I₉分解产生的杂质相(即CsI),促进了一条简便、安全且低危害的合成三元Cs₃Bi₂I₉ NCs的途径。此外,观察到当Mn浓度相对于Bi含量从0变化到18.5%(原子比)时,主体NCs的价带能级加深。结果,相应的Mn掺杂NCs太阳能电池比使用未掺杂钙钛矿NCs的电池表现出更高的开路电压和更长的电子寿命。这项工作为Mn掺杂在无铅卤化物钙钛矿NCs的合成路线和光电性质中的作用开启了新的见解,用于尚未探索的应用。