Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.
Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States.
J Phys Chem Lett. 2021 Apr 15;12(14):3497-3502. doi: 10.1021/acs.jpclett.1c00564. Epub 2021 Apr 1.
The recent development of the Ehrenfest dynamics approach in the nuclear-electronic orbital (NEO) framework provides a promising way to simulate coupled nuclear-electronic dynamics. Our previous study showed that the NEO-Ehrenfest approach with a semiclassical traveling proton basis method yields accurate predictions of molecular vibrational frequencies. In this work, we provide a more thorough analysis of the semiclassical traveling proton basis method to elucidate its validity and convergence behavior. We also conduct NEO-Ehrenfest dynamics simulations to study an excited state intramolecular proton transfer process. These simulations reveal that nuclear quantum effects influence the predictions of proton transfer reaction rates and kinetic isotope effects due to the intrinsic delocalized nature of the quantum nuclear wave function. This work illustrates the importance of nuclear quantum effects in coupled nuclear-electronic dynamical processes and shows that the NEO-Ehrenfest approach can be a powerful tool for providing insights and predictions for these processes.
Ehrenfest 动力学方法在核-电子轨道(NEO)框架中的最新发展为模拟耦合核-电子动力学提供了一种很有前途的方法。我们之前的研究表明,具有半经典行质子基方法的 NEO-Ehrenfest 方法可以准确预测分子振动频率。在这项工作中,我们对半经典行质子基方法进行了更彻底的分析,以阐明其有效性和收敛行为。我们还进行了 NEO-Ehrenfest 动力学模拟,以研究激发态分子内质子转移过程。这些模拟表明,由于量子核波函数的固有离域性质,核量子效应会影响质子转移反应速率和动力学同位素效应的预测。这项工作说明了核量子效应对耦合核-电子动力学过程的重要性,并表明 NEO-Ehrenfest 方法可以成为提供这些过程的见解和预测的有力工具。