Zhao Luning, Tao Zhen, Pavošević Fabijan, Wildman Andrew, Hammes-Schiffer Sharon, Li Xiaosong
Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.
Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States.
J Phys Chem Lett. 2020 May 21;11(10):4052-4058. doi: 10.1021/acs.jpclett.0c00701. Epub 2020 May 7.
The quantum mechanical treatment of both electrons and nuclei is crucial in nonadiabatic dynamical processes such as proton-coupled electron transfer. The nuclear-electronic orbital (NEO) method provides an elegant framework for including nuclear quantum effects beyond the Born-Oppenheimer approximation. To enable the study of nonequilibrium properties, we derive and implement a real-time NEO (RT-NEO) approach based on time-dependent Hatree-Fock or density functional theory, in which the electronic and nuclear degrees of freedom are propagated in a time-dependent variational framework. Nuclear and electronic spectral features can be resolved from the time-dependent dipole moment computed using the RT-NEO method. The test cases show the dynamical interplay between the quantum nuclei and the electrons through vibronic coupling. Moreover, vibrational excitation in the RT-NEO approach is demonstrated by applying a resonant driving field, and electronic excitation is demonstrated by simulating excited state intramolecular proton transfer. This work shows that the RT-NEO approach is a promising tool to study nonadiabatic quantum dynamical processes within a time-dependent variational description for the coupled electronic and nuclear degrees of freedom.
在诸如质子耦合电子转移等非绝热动力学过程中,对电子和原子核进行量子力学处理至关重要。核电子轨道(NEO)方法为纳入超越玻恩-奥本海默近似的核量子效应提供了一个优雅的框架。为了能够研究非平衡性质,我们基于含时哈特里-福克或密度泛函理论推导并实现了一种实时NEO(RT-NEO)方法,其中电子和核自由度在含时变分框架中进行传播。核光谱和电子光谱特征可从使用RT-NEO方法计算的含时偶极矩中分辨出来。测试案例展示了量子原子核与电子之间通过振子-电子耦合的动力学相互作用。此外,通过施加共振驱动场证明了RT-NEO方法中的振动激发,并通过模拟激发态分子内质子转移证明了电子激发。这项工作表明,RT-NEO方法是在含时变分描述中研究电子和核自由度耦合的非绝热量子动力学过程的一个有前途的工具。