Suppr超能文献

酰化非特异性磷脂酶 C4 决定了其在植物响应磷饥饿中的功能。

Acylation of non-specific phospholipase C4 determines its function in plant response to phosphate deficiency.

机构信息

National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.

Department of Biology, University of Missouri, St. Louis, MO, 63121, USA.

出版信息

Plant J. 2021 Jun;106(6):1647-1659. doi: 10.1111/tpj.15260. Epub 2021 May 2.

Abstract

Non-specific phospholipase C (NPC) is involved in plant growth, development and stress responses. To elucidate the mechanism by which NPCs mediate cellular functions, here we show that NPC4 is S-acylated at the C terminus and that acylation determines its plasma membrane (PM) association and function. The acylation of NPC4 was detected using NPC4 isolated from Arabidopsis and reconstituted in vitro. The C-terminal Cys-533 was identified as the S-acylation residue, and the mutation of Cys-533 to Ala-533 in NPC4 (NPC4 ) led to the loss of S-acylation and membrane association of NPC4. The knockout of NPC4 impeded the phosphate deficiency-induced decrease of the phosphosphingolipid glycosyl inositol phosphoryl ceramide (GIPC), but introducing NPC4 to npc4-1 failed to complement this defect, thereby supporting the hypothesis that the non-acylated NPC4 fails to hydrolyze GIPC during phosphate deprivation. Moreover, NPC4 failed to complement the primary root growth in npc4-1 under stress. In addition, NPC4 in Brassica napus was S-acylated and mutation of the S-acylating cysteine residue of BnaC01.NPC4 led to the loss of S-acylation and its membrane association. Together, our results reveal that S-acylation of NPC4 in the C terminus is conserved and required for its membrane association, phosphosphingolipid hydrolysis and function in plant stress responses.

摘要

非特异性磷酯酶 C(NPC)参与植物的生长、发育和应激反应。为了阐明 NPC 介导细胞功能的机制,我们发现 NPC4 在 C 末端发生 S-酰化,并且酰化决定了其质膜(PM)的结合和功能。通过从小麦中分离 NPC4 并在体外重建,检测 NPC4 的酰化。鉴定出 C 末端半胱氨酸 533 是 S-酰化残基,NPC4 中 Cys-533 突变为 Ala-533(NPC4 )导致 NPC4 的 S-酰化和膜结合丧失。NPC4 的敲除阻碍了磷酸盐缺乏诱导的磷酸鞘氨醇糖基肌醇磷酸神经酰胺(GIPC)的减少,但将 NPC4 引入 npc4-1 未能弥补这一缺陷,从而支持了非酰化 NPC4 在磷酸盐缺乏时不能水解 GIPC 的假设。此外,在胁迫下,npc4-1 中的 NPC4 无法补充主根的生长。此外,油菜中的 NPC4 发生 S-酰化,BnaC01.NPC4 的 S-酰化半胱氨酸残基突变导致 S-酰化及其膜结合丧失。总之,我们的研究结果表明 NPC4 在 C 末端的 S-酰化是保守的,是其质膜结合、磷酸鞘氨醇水解和植物应激反应功能所必需的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验