Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague Czech Republic.
Front Plant Sci. 2015 Feb 16;6:66. doi: 10.3389/fpls.2015.00066. eCollection 2015.
Aluminum ions (Al) have been recognized as a major toxic factor for crop production in acidic soils. The first indication of the Al toxicity in plants is the cessation of root growth, but the mechanism of root growth inhibition is largely unknown. Here we examined the impact of Al on the expression, activity, and function of the non-specific phospholipase C4 (NPC4), a plasma membrane-bound isoform of NPC, a member of the plant phospholipase family, in Arabidopsis thaliana. We observed a lower expression of NPC4 using β-glucuronidase assay and a decreased formation of labeled diacylglycerol, product of NPC activity, using fluorescently labeled phosphatidylcholine as a phospholipase substrate in Arabidopsis WT seedlings treated with AlCl3 for 2 h. The effect on in situ NPC activity persisted for longer Al treatment periods (8, 14 h). Interestingly, in seedlings overexpressing NPC4, the Al-mediated NPC-inhibiting effect was alleviated at 14 h. However, in vitro activity and localization of NPC4 were not affected by Al, thus excluding direct inhibition by Al ions or possible translocation of NPC4 as the mechanisms involved in NPC-inhibiting effect. Furthermore, the growth of tobacco pollen tubes rapidly arrested by Al was partially rescued by the overexpression of AtNPC4 while Arabidopsis npc4 knockout lines were found to be more sensitive to Al stress during long-term exposure of Al at low phosphate conditions. Our observations suggest that NPC4 plays a role in both early and long-term responses to Al stress.
铝离子(Al)已被认为是酸性土壤中作物生产的主要毒性因素。植物中铝毒性的第一个迹象是根生长停止,但根生长抑制的机制在很大程度上尚不清楚。在这里,我们研究了 Al 对拟南芥中非特异性磷脂酶 C4(NPC4)的表达、活性和功能的影响,NPC4 是 NPC 的一种质膜结合同工型,是植物磷脂酶家族的成员。我们观察到用 AlCl3 处理 2 小时后,β-葡糖苷酸酶测定法中 NPC4 的表达较低,荧光标记的磷脂酰胆碱作为磷脂酶底物形成的标记二酰基甘油(NPC 活性的产物)减少。在较长的 Al 处理时间(8、14 小时)中,对原位 NPC 活性的影响持续存在。有趣的是,在 NPC4 过表达的幼苗中,14 小时时 Al 介导的 NPC 抑制作用得到缓解。然而,Al 对 NPC4 的体外活性和定位没有影响,因此排除了 Al 离子的直接抑制作用或 NPC4 的可能易位作为涉及 NPC 抑制作用的机制。此外,烟草花粉管的生长被 Al 迅速抑制,而 AtNPC4 的过表达部分得到挽救,而在低磷酸盐条件下长时间暴露于 Al 时,发现拟南芥 npc4 敲除系对 Al 胁迫更敏感。我们的观察表明,NPC4 在对 Al 胁迫的早期和长期反应中都发挥作用。