Sumetsky M
Opt Lett. 2021 Apr 1;46(7):1656-1659. doi: 10.1364/OL.422053.
We determine the fundamental limit of microresonator field uniformity. It can be achieved in a specially designed microresonator, called a bat microresonator, fabricated at the optical fiber surface. We show that the relative nonuniformity of an eigenmode amplitude along the axial length of an ideal bat microresonator cannot be smaller than 13, where ,, and are its refractive index, eigenmode wavelength, and -factor, respectively. For a silica microresonator with =10, this eigenmode has axial speed ∼10, where is the speed of light in vacuum, and its nonuniformity along length =100\unicode{x00B5}m at wavelength =1.5µm is ∼10. For a realistic fiber with diameter 100 µm and surface roughness 0.2 nm, the smallest eigenmode nonuniformity is ∼0.0003. As an application, we consider a bat microresonator evanescently coupled to high -factor silica microspheres, which serves as a reference supporting ultraprecise straight-line translation.
我们确定了微谐振器场均匀性的基本极限。这可以在一种专门设计的微谐振器中实现,这种微谐振器被称为蝙蝠微谐振器,它是在光纤表面制造的。我们表明,理想蝙蝠微谐振器本征模振幅沿轴向长度的相对不均匀性不能小于13,其中 、 和 分别是其折射率、本征模波长和 因子。对于 = 10的二氧化硅微谐振器,该本征模的轴向速度约为10 ,其中 是真空中的光速,其在波长 = 1.5 µm时沿长度 = 100 µm的不均匀性约为10 。对于直径为100 µm且表面粗糙度为0.2 nm的实际光纤,最小本征模不均匀性约为0.0003。作为一种应用,我们考虑一种与高 因子二氧化硅微球倏逝耦合的蝙蝠微谐振器,它用作支持超精密直线平移的参考。