Suppr超能文献

利用网络挖掘和深度学习预测创新型企业。

Predicting innovative firms using web mining and deep learning.

机构信息

Department of Economics of Innovation and Industrial Dynamics, ZEW Centre for European Economic Research, Mannheim, Germany.

Department of Geoinformatics Z_GIS, University of Salzburg, Salzburg, Austria.

出版信息

PLoS One. 2021 Apr 1;16(4):e0249071. doi: 10.1371/journal.pone.0249071. eCollection 2021.

Abstract

Evidence-based STI (science, technology, and innovation) policy making requires accurate indicators of innovation in order to promote economic growth. However, traditional indicators from patents and questionnaire-based surveys often lack coverage, granularity as well as timeliness and may involve high data collection costs, especially when conducted at a large scale. Consequently, they struggle to provide policy makers and scientists with the full picture of the current state of the innovation system. In this paper, we propose a first approach on generating web-based innovation indicators which may have the potential to overcome some of the shortcomings of traditional indicators. Specifically, we develop a method to identify product innovator firms at a large scale and very low costs. We use traditional firm-level indicators from a questionnaire-based innovation survey (German Community Innovation Survey) to train an artificial neural network classification model on labelled (product innovator/no product innovator) web texts of surveyed firms. Subsequently, we apply this classification model to the web texts of hundreds of thousands of firms in Germany to predict whether they are product innovators or not. We then compare these predictions to firm-level patent statistics, survey extrapolation benchmark data, and regional innovation indicators. The results show that our approach produces reliable predictions and has the potential to be a valuable and highly cost-efficient addition to the existing set of innovation indicators, especially due to its coverage and regional granularity.

摘要

循证性性传播感染(STI)政策制定需要准确的创新指标,以促进经济增长。然而,传统的专利指标和问卷调查往往缺乏全面性、粒度以及及时性,并且可能涉及高昂的数据收集成本,尤其是在大规模进行时。因此,它们难以为政策制定者和科学家提供创新系统当前状况的全貌。在本文中,我们提出了一种生成基于网络的创新指标的初步方法,该方法可能有潜力克服传统指标的一些缺点。具体来说,我们开发了一种在大规模和低成本下识别产品创新型企业的方法。我们使用问卷调查(德国社区创新调查)中的传统企业级指标,对标记为(产品创新者/非产品创新者)的调查企业的网络文本进行人工神经网络分类模型训练。随后,我们将该分类模型应用于德国数万家企业的网络文本,以预测它们是否是产品创新者。然后,我们将这些预测与企业级专利统计数据、调查外推基准数据和区域创新指标进行比较。结果表明,我们的方法可以产生可靠的预测结果,并且有可能成为现有创新指标集的一个有价值且高效的补充,尤其是由于其涵盖范围和区域粒度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0d/8016297/f922777b1da5/pone.0249071.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验