Suppr超能文献

基于企业网站的创新指标——哪些网站特征可预测企业层面的创新活动?

Innovation indicators based on firm websites-Which website characteristics predict firm-level innovation activity?

机构信息

Department of Digital Economy, ZEW - Leibniz Centre for European Economic Research, Mannheim, Germany.

Justus-Liebig-University Giessen, Faculty of Economics, Gießen, Germany.

出版信息

PLoS One. 2021 Apr 5;16(4):e0249583. doi: 10.1371/journal.pone.0249583. eCollection 2021.

Abstract

Web-based innovation indicators may provide new insights into firm-level innovation activities. However, little is known yet about the accuracy and relevance of web-based information for measuring innovation. In this study, we use data on 4,487 firms from the Mannheim Innovation Panel (MIP) 2019, the German contribution to the European Community Innovation Survey (CIS), to analyze which website characteristics perform as predictors of innovation activity at the firm level. Website characteristics are measured by several data mining methods and are used as features in different Random Forest classification models that are compared against each other. Our results show that the most relevant website characteristics are textual content, the use of English language, the number of subpages and the amount of characters on a website. In our main analysis, models using all website characteristics jointly yield AUC values of up to 0.75 and increase accuracy scores by up to 18 percentage points compared to a baseline prediction based on the sample mean. Moreover, predictions with website characteristics significantly differ from baseline predictions according to a McNemar test. Results also indicate a better performance for the prediction of product innovators and firms with innovation expenditures than for the prediction of process innovators.

摘要

基于网络的创新指标可能为企业层面的创新活动提供新的见解。然而,目前对于基于网络的信息在衡量创新方面的准确性和相关性知之甚少。在这项研究中,我们使用了来自曼海姆创新面板(MIP)2019 年的 4487 家企业的数据,这是德国对欧洲共同体创新调查(CIS)的贡献,以分析哪些网站特征可作为企业层面创新活动的预测指标。网站特征通过几种数据挖掘方法进行测量,并用作不同随机森林分类模型的特征,这些模型相互进行比较。我们的结果表明,最相关的网站特征是文本内容、英语语言的使用、子页面的数量和网站上的字符数量。在我们的主要分析中,使用所有网站特征的模型联合产生的 AUC 值高达 0.75,并且与基于样本均值的基线预测相比,准确度得分提高了 18 个百分点。此外,根据 McNemar 检验,网站特征的预测与基线预测有显著差异。结果还表明,与过程创新者的预测相比,网站特征在产品创新者和有创新支出的企业的预测方面表现更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa55/8021193/e6ea66e8a981/pone.0249583.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验