Suppr超能文献

多离子摄取表型平台揭示了影响根系养分摄取的共享机制。

A multiple ion-uptake phenotyping platform reveals shared mechanisms affecting nutrient uptake by roots.

机构信息

Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA.

Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA.

出版信息

Plant Physiol. 2021 Apr 2;185(3):781-795. doi: 10.1093/plphys/kiaa080.

Abstract

Nutrient uptake is critical for crop growth and is determined by root foraging in soil. Growth and branching of roots lead to effective root placement to acquire nutrients, but relatively little is known about absorption of nutrients at the root surface from the soil solution. This knowledge gap could be alleviated by understanding sources of genetic variation for short-term nutrient uptake on a root length basis. A modular platform called RhizoFlux was developed for high-throughput phenotyping of multiple ion-uptake rates in maize (Zea mays L.). Using this system, uptake rates were characterized for the crop macronutrients nitrate, ammonium, potassium, phosphate, and sulfate among the Nested Association Mapping (NAM) population founder lines. The data revealed substantial genetic variation for multiple ion-uptake rates in maize. Interestingly, specific nutrient uptake rates (nutrient uptake rate per length of root) were found to be both heritable and distinct from total uptake and plant size. The specific uptake rates of each nutrient were positively correlated with one another and with specific root respiration (root respiration rate per length of root), indicating that uptake is governed by shared mechanisms. We selected maize lines with high and low specific uptake rates and performed an RNA-seq analysis, which identified key regulatory components involved in nutrient uptake. The high-throughput multiple ion-uptake kinetics pipeline will help further our understanding of nutrient uptake, parameterize holistic plant models, and identify breeding targets for crops with more efficient nutrient acquisition.

摘要

养分吸收对作物生长至关重要,而这取决于根系在土壤中的觅食行为。根系的生长和分支导致了有效根的位置,以获取养分,但对于从土壤溶液中吸收养分的表面吸收,相对知之甚少。这种知识差距可以通过了解基于根长的短期养分吸收的遗传变异来源来缓解。一个名为 RhizoFlux 的模块化平台被开发出来,用于高通量表型分析玉米(Zea mays L.)的多种离子吸收速率。使用该系统,在嵌套关联作图(NAM)群体创始人系中对作物大量营养物硝酸盐、铵、钾、磷酸盐和硫酸盐的吸收速率进行了表征。数据显示玉米具有多种离子吸收速率的大量遗传变异。有趣的是,发现特定养分吸收速率(每根长度的养分吸收速率)既具有遗传性,又与总吸收和植物大小不同。每种养分的特定吸收速率彼此之间以及与特定根呼吸(每根长度的根呼吸速率)呈正相关,表明吸收受共同机制控制。我们选择了具有高和低特定吸收速率的玉米系,并进行了 RNA-seq 分析,鉴定了参与养分吸收的关键调控成分。高通量多离子吸收动力学分析流水线将有助于我们进一步了解养分吸收,参数化整体植物模型,并确定具有更高养分获取效率的作物的育种目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cd7/8133564/04f14ceee171/kiaa080f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验