Suppr超能文献

H2 和 NADPH 之间的双向电子转移减轻了绿藻对光波动的响应。

Bi-directional electron transfer between H2 and NADPH mitigates light fluctuation responses in green algae.

机构信息

School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.

出版信息

Plant Physiol. 2021 May 27;186(1):168-179. doi: 10.1093/plphys/kiab051.

Abstract

The metabolism of green algae has been the focus of much research over the last century. These photosynthetic organisms can thrive under various conditions and adapt quickly to changing environments by concomitant usage of several metabolic apparatuses. The main electron coordinator in their chloroplasts, nicotinamide adenine dinucleotide phosphate (NADPH), participates in many enzymatic activities and is also responsible for inter-organellar communication. Under anaerobic conditions, green algae also accumulate molecular hydrogen (H2), a promising alternative for fossil fuels. However, to scale-up its accumulation, a firm understanding of its integration in the photosynthetic apparatus is still required. While it is generally accepted that NADPH metabolism correlates to H2 accumulation, the mechanism of this collaboration is still vague and relies on indirect measurements. Here, we investigated this connection in Chlamydomonas reinhardtii using simultaneous measurements of both dissolved gases concentration, NADPH fluorescence and electrochromic shifts at 520-546 nm. Our results indicate that energy transfer between H2 and NADPH is bi-directional and crucial for the maintenance of redox balance under light fluctuations. At light onset, NADPH consumption initially eventuates in H2 evolution, which initiates the photosynthetic electron flow. Later on, as illumination continues the majority of NADPH is diverted to the Calvin-Benson-Bassham cycle. Dark onset triggers re-assimilation of H2, which produces NADPH and so, enables initiation of dark fermentative metabolism.

摘要

在上个世纪,绿藻的代谢一直是许多研究的焦点。这些光合生物可以在各种条件下茁壮成长,并通过同时使用几种代谢装置快速适应不断变化的环境。它们叶绿体中的主要电子协调物烟酰胺腺嘌呤二核苷酸磷酸(NADPH)参与许多酶促活性,并且还负责细胞器间的通讯。在厌氧条件下,绿藻还会积累分子氢(H2),这是化石燃料的一种有前途的替代品。然而,要扩大其积累,仍需要对其在光合作用装置中的整合有一个明确的理解。虽然普遍认为 NADPH 代谢与 H2 积累相关,但这种协同作用的机制仍然模糊不清,并且依赖于间接测量。在这里,我们使用同时测量溶解气体浓度、NADPH 荧光和 520-546nm 处的电致变色位移的方法,在莱茵衣藻中研究了这种联系。我们的结果表明,H2 和 NADPH 之间的能量转移是双向的,对于在光波动下维持氧化还原平衡至关重要。在光起始时,NADPH 的消耗最初导致 H2 的释放,从而启动光合作用电子流。后来,随着光照的继续,大部分 NADPH 被转移到卡尔文-本森-巴斯汉姆循环。暗起始触发 H2 的再同化,产生 NADPH,从而使暗发酵代谢的启动成为可能。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验