Suppr超能文献

光驱动产氢:光合作用工程的经验教训

Light-Driven H Production in : Lessons from Engineering of Photosynthesis.

作者信息

Hippler Michael, Khosravitabar Fatemeh

机构信息

Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany.

Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan.

出版信息

Plants (Basel). 2024 Jul 30;13(15):2114. doi: 10.3390/plants13152114.

Abstract

In the green alga , hydrogen production is catalyzed via the [FeFe]-hydrogenases HydA1 and HydA2. The electrons required for the catalysis are transferred from ferredoxin (FDX) towards the hydrogenases. In the light, ferredoxin receives its electrons from photosystem I (PSI) so that H production becomes a fully light-driven process. HydA1 and HydA2 are highly O sensitive; consequently, the formation of H occurs mainly under anoxic conditions. Yet, photo-H production is tightly coupled to the efficiency of photosynthetic electron transport and linked to the photosynthetic control via the Cyt complex, the control of electron transfer at the level of photosystem II (PSII) and the structural remodeling of photosystem I (PSI). These processes also determine the efficiency of linear (LEF) and cyclic electron flow (CEF). The latter is competitive with H photoproduction. Additionally, the CBB cycle competes with H photoproduction. Consequently, an in-depth understanding of light-driven H production via photosynthetic electron transfer and its competition with CO fixation is essential for improving photo-H production. At the same time, the smart design of photo-H production schemes and photo-H bioreactors are challenges for efficient up-scaling of light-driven photo-H production.

摘要

在绿藻中,氢气的产生是由[FeFe]-氢化酶HydA1和HydA2催化的。催化所需的电子从铁氧化还原蛋白(FDX)转移到氢化酶。在光照条件下,铁氧化还原蛋白从光系统I(PSI)接收电子,从而使氢气的产生成为一个完全由光驱动的过程。HydA1和HydA2对氧气高度敏感;因此,氢气的形成主要发生在缺氧条件下。然而,光驱动产氢与光合电子传递效率紧密相关,并通过细胞色素复合物与光合控制相联系,在光系统II(PSII)水平上控制电子转移以及光系统I(PSI)的结构重塑。这些过程也决定了线性电子流(LEF)和循环电子流(CEF)的效率。后者与光驱动产氢相互竞争。此外,卡尔文-本森-巴斯德循环(CBB循环)也与光驱动产氢相互竞争。因此,深入了解通过光合电子转移进行的光驱动产氢及其与二氧化碳固定的竞争对于提高光驱动产氢至关重要。与此同时,光驱动产氢方案和光驱动产氢生物反应器的智能设计是光驱动产氢高效扩大规模的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6ed/11314271/afb804fb503c/plants-13-02114-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验