Suppr超能文献

高效稳定的光解水光电催化剂的设计原则

Design Principles for Efficient and Stable Water Splitting Photoelectrocatalysts.

作者信息

Hemmerling John R, Mathur Aarti, Linic Suljo

机构信息

Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.

Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109, United States.

出版信息

Acc Chem Res. 2021 Apr 20;54(8):1992-2002. doi: 10.1021/acs.accounts.1c00072. Epub 2021 Apr 1.

Abstract

ConspectusPhotoelectrochemical water splitting is a promising avenue for sustainable production of hydrogen used in the chemical industry and hydrogen fuel cells. The basic components of most photoelectrochemical water splitting systems are semiconductor light absorbers coupled to electrocatalysts, which perform the desired chemical reactions. A critical challenge for the design of these systems is the lack of stability for the majority of desired semiconductors under operating water splitting conditions. One strategy to address this issue is to protect the semiconductor by covering it with a stabilizing insulator layer, creating a metal-insulator-semiconductor (MIS) architecture, which has demonstrated improved stability. In addition to enhanced stability, the insulator layer may significantly affect the electron and hole transfer, which governs the recombination rates. Furthermore, the insertion of an insulator layer leads to the introduction of additional insulator/electrocatalyst and insulator/semiconductor interfaces. These interfaces can impact the system's performance significantly, and they need to be carefully engineered to optimize the efficiencies of MIS systems. In this Account, we describe our recent progress in shedding light on the critical role of the insulator and the interfaces on the performance of MIS systems. We discuss our findings by focusing on the concrete example of planar n-type Si protected by a HfO insulator layer and coupled to a Ni or Ir electrocatalyst that performs the oxygen evolution reaction, one of the water splitting half-reactions. To improve our fundamental understanding of the insulator layer, we precisely control the HfO insulator thickness using atomic layer deposition (ALD), and we perform a series of rigorous electrochemical experiments coupled with theory and modeling. We demonstrate that by tuning the insulator thickness, we can control the flux and recombination of photogenerated electrons and holes to optimize the generated photovoltage. Despite optimizing the thickness, we find that the maximum generated photovoltage in MIS systems is often significantly lower than the upper performance limit, i.e., there are additional losses in the system that could not be addressed by optimizing the insulator thickness. We identify the sources of these losses and describe strategies to minimize them by a combination of improving the semiconductor light absorption, removing nonidealities associated with interfacial defects, and finding alternative insulators with improved charge carrier selectivity. Finally, we quantify the improvements that can be obtained by implementing these specific strategies. Our collective work outlines strategies to analyze MIS systems, identify the sources of efficiency losses, and optimize the design to approach the fundamental performance limits. These general approaches are broadly applicable to photoelectrochemical materials that utilize sunlight to produce value-added chemicals.

摘要

综述

光电化学水分解是化工行业和氢燃料电池可持续制氢的一条有前景的途径。大多数光电化学水分解系统的基本组成部分是与电催化剂耦合的半导体光吸收剂,电催化剂进行所需的化学反应。设计这些系统的一个关键挑战是,在运行的水分解条件下,大多数所需半导体缺乏稳定性。解决这个问题的一种策略是用稳定的绝缘层覆盖半导体来保护它,形成金属-绝缘体-半导体(MIS)结构,这已证明稳定性有所提高。除了增强稳定性外,绝缘层可能会显著影响电子和空穴的转移,而这决定了复合率。此外,插入绝缘层会导致引入额外的绝缘体/电催化剂和绝缘体/半导体界面。这些界面会对系统性能产生重大影响,需要精心设计以优化MIS系统的效率。在本综述中,我们描述了我们最近在阐明绝缘体和界面在MIS系统性能中的关键作用方面取得的进展。我们通过聚焦于由HfO绝缘层保护并与执行析氧反应(水分解半反应之一)的Ni或Ir电催化剂耦合的平面n型Si的具体例子来讨论我们的发现。为了增进我们对绝缘层的基本理解,我们使用原子层沉积(ALD)精确控制HfO绝缘层的厚度,并结合理论和建模进行了一系列严格的电化学实验。我们证明,通过调整绝缘层厚度,可以控制光生电子和空穴的通量和复合,以优化产生的光电压。尽管优化了厚度,但我们发现MIS系统中产生的最大光电压通常远低于性能上限,即系统中存在额外的损失,无法通过优化绝缘层厚度来解决。我们确定了这些损失的来源,并描述了通过改善半导体光吸收、消除与界面缺陷相关的非理想性以及寻找具有改进的电荷载流子选择性的替代绝缘体来将其最小化的策略。最后,我们量化了通过实施这些具体策略可以获得的改进。我们的总体工作概述了分析MIS系统、确定效率损失来源以及优化设计以接近基本性能极限的策略。这些通用方法广泛适用于利用阳光生产增值化学品的光电化学材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验