Mateos Borja, Bernardo-Seisdedos Ganeko, Dietrich Valentin, Zalba Nicanor, Ortega Gabriel, Peccati Francesca, Jiménez-Osés Gonzalo, Konrat Robert, Tollinger Martin, Millet Oscar
Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Parque Tecnológico de Bizkaia, Derio, Spain; Department of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna Biocenter Campus 5, Vienna, Austria.
Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Parque Tecnológico de Bizkaia, Derio, Spain.
Biophys J. 2021 May 18;120(10):2067-2077. doi: 10.1016/j.bpj.2021.03.020. Epub 2021 Mar 29.
Protein oligomerization processes are widespread and of crucial importance to understand degenerative diseases and healthy regulatory pathways. One particular case is the homo-oligomerization of folded domains involving domain swapping, often found as a part of the protein homeostasis in the crowded cytosol, composed of a complex mixture of cosolutes. Here, we have investigated the effect of a plethora of cosolutes of very diverse nature on the kinetics of a protein dimerization by domain swapping. In the absence of cosolutes, our system exhibits slow interconversion rates, with the reaction reaching the equilibrium within the average protein homeostasis timescale (24-48 h). In the presence of crowders, though, the oligomerization reaction in the same time frame will, depending on the protein's initial oligomeric state, either reach a pure equilibrium state or get kinetically trapped into an apparent equilibrium. Specifically, when the reaction is initiated from a large excess of dimer, it becomes unsensitive to the effect of cosolutes and reaches the same equilibrium populations as in the absence of cosolute. Conversely, when the reaction starts from a large excess of monomer, the reaction during the homeostatic timescale occurs under kinetic control, and it is exquisitely sensitive to the presence and nature of the cosolute. In this scenario (the most habitual case in intracellular oligomerization processes), the effect of cosolutes on the intermediate conformation and diffusion-mediated encounters will dictate how the cellular milieu affects the domain-swapping reaction.
蛋白质寡聚化过程广泛存在,对于理解退行性疾病和健康调节途径至关重要。一个特殊的例子是涉及结构域交换的折叠结构域的同型寡聚化,这种现象经常作为蛋白质稳态的一部分出现在拥挤的细胞质中,细胞质由溶质的复杂混合物组成。在这里,我们研究了大量性质各异的溶质对通过结构域交换进行的蛋白质二聚化动力学的影响。在没有溶质的情况下,我们的系统表现出缓慢的相互转化率,反应在平均蛋白质稳态时间尺度(24 - 48小时)内达到平衡。然而,在有拥挤剂存在的情况下,在相同的时间框架内,寡聚化反应将根据蛋白质的初始寡聚状态,要么达到纯平衡状态,要么在动力学上陷入表观平衡。具体而言,当反应从大量过量的二聚体开始时,它对溶质的影响变得不敏感,并达到与没有溶质时相同的平衡群体。相反,当反应从大量过量的单体开始时,在稳态时间尺度内的反应在动力学控制下发生,并且对溶质的存在和性质极其敏感。在这种情况下(细胞内寡聚化过程中最常见的情况),溶质对中间构象和扩散介导的相遇的影响将决定细胞环境如何影响结构域交换反应。