Suppr超能文献

双向随机配置网络回归问题。

Bidirectional stochastic configuration network for regression problems.

机构信息

College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China.

College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China.

出版信息

Neural Netw. 2021 Aug;140:237-246. doi: 10.1016/j.neunet.2021.03.016. Epub 2021 Mar 18.

Abstract

To adapt to the reality of limited computing resources of various terminal devices in industrial applications, a randomized neural network called stochastic configuration network (SCN), which can conduct effective training without GPU, was proposed. SCN uses a supervisory random mechanism to assign its input weights and hidden biases, which makes it more stable than other randomized algorithms but also leads to time-consuming model training. To alleviate this problem, we propose a novel bidirectional SCN algorithm (BSCN) in this paper, which divides the way of adding hidden nodes into two modes: forward learning and backward learning. In the forward learning mode, BSCN still uses the supervisory mechanism to configure the parameters of the newly added nodes, which is the same as SCN. In the backward learning mode, BSCN calculates the parameters at one time based on the residual error feedback of the current model. The two learning modes are performed iteratively until the prediction error of the model reaches an acceptable level or the number of hidden nodes reaches its maximum value. This semi-random learning mechanism greatly speeds up the training efficiency of the BSCN model and significantly improves the quality of the hidden nodes. Extensive experiments on ten benchmark regression problems, two real-life air pollution prediction problems, and a classical image processing problem show that BSCN can achieve faster training speed, higher stability, and better generalization ability than SCN.

摘要

为了适应工业应用中各种终端设备计算资源有限的现实,提出了一种名为随机配置网络(SCN)的随机神经网络,它可以在没有 GPU 的情况下进行有效的训练。SCN 使用监督随机机制来分配其输入权重和隐藏偏差,这使其比其他随机算法更稳定,但也导致模型训练时间过长。为了解决这个问题,我们在本文中提出了一种新的双向 SCN 算法(BSCN),它将添加隐藏节点的方式分为两种模式:前向学习和后向学习。在正向学习模式中,BSCN 仍然使用监督机制来配置新添加节点的参数,这与 SCN 相同。在后向学习模式中,BSCN 根据当前模型的残差反馈一次性计算参数。这两种学习模式迭代执行,直到模型的预测误差达到可接受的水平或隐藏节点的数量达到最大值。这种半随机学习机制极大地提高了 BSCN 模型的训练效率,并显著提高了隐藏节点的质量。在十个基准回归问题、两个实际空气污染预测问题和一个经典图像处理问题上的广泛实验表明,BSCN 可以实现比 SCN 更快的训练速度、更高的稳定性和更好的泛化能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验