ArGan's Lab, School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON, Canada.
Department of Chemistry, Faculty of Science, University of Waterloo, Waterloo, ON, Canada.
Sci Rep. 2021 Apr 1;11(1):7429. doi: 10.1038/s41598-021-86471-0.
The 2019 novel coronavirus pandemic caused by SARS-CoV-2 remains a serious health threat to humans and there is an urgent need to develop therapeutics against this deadly virus. Recent scientific evidences have suggested that the main protease (M) enzyme in SARS-CoV-2 can be an ideal drug target due to its crucial role in the viral replication and transcription processes. Therefore, there are ongoing research efforts to identify drug candidates against SARS-CoV-2 M that resulted in hundreds of X-ray crystal structures of ligand-bound M complexes in the Protein Data Bank (PDB) describing the interactions of different fragment chemotypes within different sites of the M. In this work, we performed rigorous molecular dynamics (MD) simulation of 62 reversible ligand-M complexes in the PDB to gain mechanistic insights about their interactions at the atomic level. Using a total of over 3 µs long MD trajectories, we characterized different pockets in the apo M structure, and analyzed the dynamic interactions and binding affinity of ligands within those pockets. Our results identified the key residues that stabilize the ligands in the catalytic sites and other pockets of M. Our analyses unraveled the role of a lateral pocket in the catalytic site in M that is critical for enhancing the ligand binding to the enzyme. We also highlighted the important contribution from HIS163 in the lateral pocket towards ligand binding and affinity against M through computational mutation analyses. Further, we revealed the effects of explicit water molecules and M dimerization in the ligand association with the target. Thus, comprehensive molecular-level insights gained from this work can be useful to identify or design potent small molecule inhibitors against SARS-CoV-2 M.
由 SARS-CoV-2 引起的 2019 年新型冠状病毒大流行仍然对人类健康构成严重威胁,因此迫切需要开发针对这种致命病毒的疗法。最近的科学证据表明,SARS-CoV-2 的主要蛋白酶(M)酶可以作为理想的药物靶点,因为它在病毒复制和转录过程中起着至关重要的作用。因此,目前正在进行研究工作,以鉴定针对 SARS-CoV-2 M 的药物候选物,这导致蛋白质数据库(PDB)中包含配体结合 M 复合物的 X 射线晶体结构的数量达到数百个,这些结构描述了不同片段化学型在 M 的不同部位的相互作用。在这项工作中,我们对 PDB 中的 62 个可逆配体-M 复合物进行了严格的分子动力学(MD)模拟,以从原子水平上获得关于它们相互作用的机制见解。使用总共超过 3µs 的 MD 轨迹,我们表征了apo M 结构中的不同口袋,并分析了这些口袋中配体的动态相互作用和结合亲和力。我们的结果确定了稳定催化部位和 M 其他口袋中配体的关键残基。我们的分析揭示了催化部位中侧向口袋在增强配体与酶结合中的关键作用。我们还通过计算突变分析强调了侧向口袋中 HIS163 对配体结合和对 M 的亲和力的重要贡献。此外,我们揭示了与目标结合的配体中显式水分子和 M 二聚化的影响。因此,从这项工作中获得的全面的分子水平见解可用于鉴定或设计针对 SARS-CoV-2 M 的有效小分子抑制剂。