Suppr超能文献

针对 SARS-CoV-2 主蛋白酶的肽模拟抑制剂的共价和非共价结合自由能计算。

Covalent and non-covalent binding free energy calculations for peptidomimetic inhibitors of SARS-CoV-2 main protease.

机构信息

Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.

出版信息

Phys Chem Chem Phys. 2021 Mar 21;23(11):6746-6757. doi: 10.1039/d1cp00266j. Epub 2021 Mar 12.

Abstract

COVID-19, the disease caused by the newly discovered coronavirus-SARS-CoV-2, has created a global health, social, and economic crisis. As of mid-January 2021, there are over 90 million confirmed cases and more than 2 million reported deaths due to COVID-19. Currently, there are very limited therapeutics for the treatment or prevention of COVID-19. For this reason, it is important to find drug targets that will lead to the development of safe and effective therapeutics against the disease. The main protease (M) of the virus is an attractive target for the development of effective antiviral therapeutics because it is required for proteolytic cleavage of viral polyproteins. Furthermore, the M has no human homologues, so drugs designed to bind to this target directly have less risk for off-target effects. Recently, several high-resolution crystallographic structures of the M in complex with inhibitors have been determined-to guide drug development and to spur efforts in structure-based drug design. One of the primary objectives of modern structure-based drug design is the accurate prediction of receptor-ligand binding affinities for rational drug design and discovery. Here, we perform rigorous alchemical absolute binding free energy calculations and QM/MM calculations to give insight into the total binding energy of two recently crystallized inhibitors of SARS-CoV-2 M, namely, N3 and α-ketoamide 13b. The total binding energy consists of both covalent and non-covalent binding components since both compounds are covalent inhibitors of the M. Our results indicate that the covalent and non-covalent binding free energy contributions of both inhibitors to the M target differ significantly. The N3 inhibitor has more favourable non-covalent interactions, particularly hydrogen bonding, in the binding site of the M than the α-ketoamide inhibitor. Also, the Gibbs energy of reaction for the M-N3 covalent adduct is greater than the Gibbs reaction energy for the M-α-ketoamide covalent adduct. These differences in the covalent and non-covalent binding free energy contributions for both inhibitors could be a plausible explanation for their in vitro differences in antiviral activity. Our findings are consistent with the reversible and irreversible character of both inhibitors as reported by experiment and highlight the importance of both covalent and non-covalent binding free energy contributions to the absolute binding affinity of a covalent inhibitor towards its target. This information could prove useful in the rational design, discovery, and evaluation of potent SARS-CoV-2 M inhibitors for targeted antiviral therapy.

摘要

新型冠状病毒(SARS-CoV-2)引发的 COVID-19 已造成全球性的健康、社会和经济危机。截至 2021 年 1 月中旬,COVID-19 已导致超过 9000 万例确诊病例和超过 200 万例死亡报告。目前,治疗或预防 COVID-19 的方法非常有限。因此,找到能导致针对该疾病的安全有效的治疗方法的药物靶点非常重要。病毒的主要蛋白酶(M)是开发有效抗病毒治疗方法的有吸引力的靶标,因为它是病毒多蛋白蛋白水解切割所必需的。此外,M 没有人类同源物,因此设计用于结合该靶标的药物不太可能产生脱靶效应。最近,已经确定了几种与抑制剂结合的 M 的高分辨率晶体结构,以指导药物开发并推动基于结构的药物设计工作。现代基于结构的药物设计的主要目标之一是准确预测受体-配体的结合亲和力,以进行合理的药物设计和发现。在这里,我们进行了严格的原子化学绝对结合自由能计算和 QM/MM 计算,以深入了解两种最近结晶的 SARS-CoV-2 M 抑制剂,即 N3 和 α-酮酰胺 13b 的总结合能。总结合能既包括共价结合成分,也包括非共价结合成分,因为这两种化合物都是 M 的共价抑制剂。我们的结果表明,两种抑制剂与 M 靶标之间的共价和非共价结合自由能贡献有很大差异。N3 抑制剂在 M 的结合部位具有更有利的非共价相互作用,特别是氢键,而 α-酮酰胺抑制剂则没有。此外,M-N3 共价加合物的吉布斯反应能大于 M-α-酮酰胺共价加合物的吉布斯反应能。这两种抑制剂的共价和非共价结合自由能贡献的差异可能是它们在体外抗病毒活性差异的合理解释。我们的发现与实验报道的两种抑制剂的可逆性和不可逆性特征一致,并强调了共价和非共价结合自由能贡献对共价抑制剂与其靶标绝对结合亲和力的重要性。这些信息可能有助于合理设计、发现和评估针对 SARS-CoV-2 M 的有效抑制剂,用于靶向抗病毒治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验