Russell Jake C, Posey Victoria A, Gray Jesse, May Richard, Reed Douglas A, Zhang Hao, Marbella Lauren E, Steigerwald Michael L, Yang Yuan, Roy Xavier, Nuckolls Colin, Peurifoy Samuel R
Department of Chemistry, Columbia University, New York, NY, USA.
Department of Chemical Engineering, Columbia University, New York, NY, USA.
Nat Mater. 2021 Aug;20(8):1136-1141. doi: 10.1038/s41563-021-00954-z. Epub 2021 Apr 1.
Pseudocapacitors harness unique charge-storage mechanisms to enable high-capacity, rapidly cycling devices. Here we describe an organic system composed of perylene diimide and hexaazatrinaphthylene exhibiting a specific capacitance of 689 F g at a rate of 0.5 A g, stability over 50,000 cycles, and unprecedented performance at rates as high as 75 A g. We incorporate the material into two-electrode devices for a practical demonstration of its potential in next-generation energy-storage systems. We identify the source of this exceptionally high rate charge storage as surface-mediated pseudocapacitance, through a combination of spectroscopic, computational and electrochemical measurements. By underscoring the importance of molecular contortion and complementary electronic attributes in the selection of molecular components, these results provide a general strategy for the creation of organic high-performance energy-storage materials.
赝电容器利用独特的电荷存储机制来实现高容量、快速循环的器件。在此,我们描述了一种由苝二酰亚胺和六氮杂三萘组成的有机体系,该体系在0.5 A g的电流密度下展现出689 F g的比电容,在50000次循环中保持稳定,并且在高达75 A g的电流密度下具有前所未有的性能。我们将该材料集成到两电极器件中,以实际展示其在下一代储能系统中的潜力。通过光谱、计算和电化学测量相结合的方法,我们确定这种超高倍率电荷存储的来源是表面介导的赝电容。通过强调分子扭曲和互补电子属性在分子组件选择中的重要性,这些结果为创建有机高性能储能材料提供了一种通用策略。