Lei Wenrui, Harrison Kelsey, Bao Si Tong, Lee Kyunam, Steigerwald Michael L, Cheng Qian, Orchanian Nicholas M, Nuckolls Colin, Jiang Qifeng
Department of Chemistry, Columbia University New York NY 10027 USA
Chem Sci. 2025 Aug 29. doi: 10.1039/d5sc04900h.
Here, we explore a conjugated, contorted polymer framework tailored for ultrafast-rate charging/discharging, leveraging a tunable synthetic strategy to control its molecular length. We systematically explore the helical perylene diimide (hPDI) ladder polymers across three length regimes, short, medium, and long, to determine the optimal electrochemical stability and performance. The intermediate-length polymer strikes a critical balance between electrode integrity, solubility, and rate capability. Its reversible redox activity and structural robustness make it well-suited for both Li and Mg ions. The hPDI-medium cathode delivers a remarkable specific power of 22.4 kW kg after 10 000 cycles in Li batteries and 1.7 kW kg after 3000 cycles in Mg batteries, and we extend this to practically relevant mass loadings. This study highlights the critical role of molecular engineering in the rational design of high-performance organic cathode materials for sustainable energy storage.
在此,我们探索了一种为超快充电/放电量身定制的共轭扭曲聚合物框架,利用可调节的合成策略来控制其分子长度。我们系统地研究了跨越短、中、长三种长度范围的螺旋苝二酰亚胺(hPDI)梯形聚合物,以确定最佳的电化学稳定性和性能。中等长度的聚合物在电极完整性、溶解性和倍率性能之间达到了关键平衡。其可逆的氧化还原活性和结构稳健性使其非常适合锂和镁离子。hPDI-中等长度的阴极在锂电池中经过10000次循环后具有22.4 kW kg的显著比功率,在镁电池中经过3000次循环后具有1.7 kW kg的比功率,并且我们将此扩展到实际相关的质量负载。这项研究突出了分子工程在合理设计用于可持续储能的高性能有机阴极材料中的关键作用。