Suppr超能文献

用于高性能电子接受型赝电容器的三维结构设计

Designing Three-Dimensional Architectures for High-Performance Electron Accepting Pseudocapacitors.

作者信息

Peurifoy Samuel R, Russell Jake C, Sisto Thomas J, Yang Yuan, Roy Xavier, Nuckolls Colin

机构信息

Department of Chemistry , Columbia University , New York , New York 10027 , United States.

Program of Materials Science and Engineering, Department of Applied Physics and Applied Mathematics , Columbia University , New York, New York 10027 , United States.

出版信息

J Am Chem Soc. 2018 Sep 5;140(35):10960-10964. doi: 10.1021/jacs.8b07365. Epub 2018 Aug 24.

Abstract

By storing energy from electrochemical processes at the electrode surface, pseudocapacitors bridge the performance gap between electrostatic double-layer capacitors and batteries. In this context, molecular design offers the exciting possibility to create tunable and inexpensive organic electroactive materials. Here we describe a porous structure composed of perylene diimide and triptycene subunits and demonstrate its remarkable performance as a pseudocapacitor electrode material. The material exhibits capacitance values as high as 350 F/g at 0.2 A/g as well as excellent stability over 10 000 cycles. Moreover, we can alter the performance of the material, from battery-like (storing more charge at low rates) to capacitor-like (faster charge cycling), by modifying the structure of the pores via flow photocyclization. Organic materials capable of stable electron accepting pseudocapacitor behavior are rare and the capacitance values presented here are among the highest reported. More broadly, this work establishes molecular design and synthesis as a powerful approach for creating tunable energy storage materials.

摘要

通过在电极表面存储来自电化学过程的能量,赝电容器弥补了静电双层电容器和电池之间的性能差距。在此背景下,分子设计为创造可调节且廉价的有机电活性材料提供了令人兴奋的可能性。本文我们描述了一种由苝二酰亚胺和三蝶烯亚基组成的多孔结构,并展示了其作为赝电容器电极材料的卓越性能。该材料在0.2 A/g电流密度下表现出高达350 F/g的电容值,并且在10000次循环中具有出色的稳定性。此外,通过流动光环化修饰孔结构,我们可以改变材料的性能,从类似电池的性能(在低电流下存储更多电荷)转变为类似电容器的性能(更快的电荷循环)。能够实现稳定电子接受赝电容行为的有机材料很少见,此处呈现的电容值是已报道的最高值之一。更广泛地说,这项工作确立了分子设计与合成作为创造可调节储能材料的有力方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验