文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于磁性纳米颗粒的热疗介导药物递送并损害静止期结直肠肿瘤干细胞的致瘤能力。

Magnetic Nanoparticle-Based Hyperthermia Mediates Drug Delivery and Impairs the Tumorigenic Capacity of Quiescent Colorectal Cancer Stem Cells.

机构信息

Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genova, Italy.

PROMISE Department,Piazza delle Cliniche 2, University of Palermo, 90133 Palermo, Italy.

出版信息

ACS Appl Mater Interfaces. 2021 Apr 14;13(14):15959-15972. doi: 10.1021/acsami.0c21349. Epub 2021 Apr 2.


DOI:10.1021/acsami.0c21349
PMID:33797220
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8045020/
Abstract

Cancer stem cells (CSCs) are the tumor cell subpopulation responsible for resistance to chemotherapy, tumor recurrence, and metastasis. An efficient therapy must act on low proliferating quiescent-CSCs (q-CSCs). We here investigate the effect of magnetic hyperthermia (MHT) in combination with local chemotherapy as a dual therapy to inhibit patient-derived colorectal qCR-CSCs. We apply iron oxide nanocubes as MHT heat mediators, coated with a thermoresponsive polymer (TR-Cubes) and loaded with DOXO (TR-DOXO) as a chemotherapeutic agent. The thermoresponsive polymer releases DOXO only at a temperature above 44 °C. In colony-forming assays, the cells exposed to TR-Cubes with MHT reveal that qCR-CSCs struggle to survive the heat damage and, with a due delay, restart the division of dormant cells. The eradication of qCR-CSCs with a complete stop of the colony formation was achieved only with TR-DOXO when exposed to MHT. The tumor formation study confirms the combined effects of MHT with heat-mediated drug release: only the group of animals that received the CR-CSCs pretreated, , with TR-DOXO and MHT lacked the formation of tumor even after several months. For DOXO-resistant CR-CSCs cells, the same results were shown, when choosing the drug oxaliplatin rather than DOXO and applying MHT. These findings emphasize the potential of our nanoplatforms as an effective patient-personalized cancer treatment against qCR-CSCs.

摘要

癌症干细胞 (CSCs) 是肿瘤细胞亚群,负责对化疗、肿瘤复发和转移产生抗性。有效的治疗方法必须作用于增殖缓慢的静止期 CSCs (q-CSCs)。我们在此研究了磁热疗 (MHT) 联合局部化疗作为双重疗法来抑制患者来源的结直肠 qCR-CSCs。我们应用氧化铁纳米立方作为 MHT 的热介质,用热响应聚合物 (TR-Cubes) 进行涂层,并装载 DOXO (TR-DOXO) 作为化疗药物。热响应聚合物仅在温度高于 44°C 时释放 DOXO。在集落形成实验中,暴露于 MHT 的 TR-Cubes 的细胞表明 qCR-CSCs 在热损伤中难以存活,并且在适当的延迟后,休眠细胞重新开始分裂。只有当暴露于 MHT 时,用 TR-DOXO 才能彻底消除 qCR-CSCs 并完全停止集落形成。肿瘤形成研究证实了 MHT 与热介导药物释放的联合效应:只有接受了用 TR-DOXO 和 MHT 预处理的 CR-CSCs 的动物组在几个月后仍然没有形成肿瘤。对于 DOXO 耐药的 CR-CSCs 细胞,当选择药物奥沙利铂而不是 DOXO 并应用 MHT 时,也得到了相同的结果。这些发现强调了我们的纳米平台作为针对 qCR-CSCs 的有效个体化癌症治疗的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87a9/8045020/023e8a82860b/am0c21349_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87a9/8045020/2ea5adf663fd/am0c21349_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87a9/8045020/f13ee4fbd9a4/am0c21349_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87a9/8045020/20c4935af912/am0c21349_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87a9/8045020/7ee4564d6504/am0c21349_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87a9/8045020/d1e7a1bd2a8d/am0c21349_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87a9/8045020/ac806e1803fc/am0c21349_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87a9/8045020/3f325dafd309/am0c21349_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87a9/8045020/023e8a82860b/am0c21349_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87a9/8045020/2ea5adf663fd/am0c21349_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87a9/8045020/f13ee4fbd9a4/am0c21349_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87a9/8045020/20c4935af912/am0c21349_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87a9/8045020/7ee4564d6504/am0c21349_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87a9/8045020/d1e7a1bd2a8d/am0c21349_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87a9/8045020/ac806e1803fc/am0c21349_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87a9/8045020/3f325dafd309/am0c21349_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87a9/8045020/023e8a82860b/am0c21349_0009.jpg

相似文献

[1]
Magnetic Nanoparticle-Based Hyperthermia Mediates Drug Delivery and Impairs the Tumorigenic Capacity of Quiescent Colorectal Cancer Stem Cells.

ACS Appl Mater Interfaces. 2021-4-14

[2]
Thermoresponsive Iron Oxide Nanocubes for an Effective Clinical Translation of Magnetic Hyperthermia and Heat-Mediated Chemotherapy.

ACS Appl Mater Interfaces. 2019-2-1

[3]
Magnetic nanoparticle-based hyperthermia: A prospect in cancer stem cell tracking and therapy.

Life Sci. 2023-6-15

[4]
Functionalization of strongly interacting magnetic nanocubes with (thermo)responsive coating and their application in hyperthermia and heat-triggered drug delivery.

ACS Appl Mater Interfaces. 2015-5-5

[5]
Targeted destruction of cancer stem cells using multifunctional magnetic nanoparticles that enable combined hyperthermia and chemotherapy.

Theranostics. 2020

[6]
pH-Responsive Polypropylene Sulfide Magnetic Nanocarrier-Mediated Chemo-Hyperthermia Kills Breast Cancer Stem Cells by Long-Term Reversal of Multidrug Resistance and Chemotherapy Resensitization.

ACS Appl Mater Interfaces. 2023-12-20

[7]
CuFeS Nanoparticles Functionalized with a Thermoresponsive Polymer for Photothermia and Externally Controlled Drug Delivery.

ACS Appl Mater Interfaces. 2023-5-17

[8]
Effective elimination of cancer stem cells by magnetic hyperthermia.

Mol Pharm. 2013-3-12

[9]
Thermoresponsive core-shell magnetic nanoparticles for combined modalities of cancer therapy.

Nanotechnology. 2009-7-29

[10]
Magnetic mesoporous silica nanoparticles for potential delivery of chemotherapeutic drugs and hyperthermia.

Dalton Trans. 2014-11-7

引用本文的文献

[1]
Thermoregulable Magnetic Microfluidic Devices by Magnetic Hyperthermia from Iron Oxide Nanoparticles.

ACS Appl Nano Mater. 2025-7-11

[2]
Multifaceted Applications of Nanomaterials in Colorectal Cancer Management: Screening, Diagnostics, and Therapeutics.

Int J Nanomedicine. 2025-6-10

[3]
Advanced drug delivery platforms target cancer stem cells.

Asian J Pharm Sci. 2025-6

[4]
The Role of Inorganic Nanomaterials in Overcoming Challenges in Colorectal Cancer Diagnosis and Therapy.

Pharmaceutics. 2025-3-25

[5]
Magnetically triggered thermoelectric heterojunctions with an efficient magnetic-thermo-electric energy cascade conversion for synergistic cancer therapy.

Nat Commun. 2025-3-10

[6]
Nanoplatforms for Magnetic-Photo-Heating of Thermo-Resistant Tumor Cells: Singular Synergic Therapeutic Effects at Mild Temperature.

Small. 2024-12

[7]
Magnetic Nanoparticles with On-Site Azide and Alkyne Functionalized Polymer Coating in a Single Step through a Solvothermal Process.

Pharmaceutics. 2024-9-19

[8]
Nanomedicine for colon-targeted drug delivery: strategies focusing on inflammatory bowel disease and colon cancer.

Nanomedicine (Lond). 2024-6-20

[9]
Control of Anisotropy and Magnetic Hyperthermia Effect by Addition of Cobalt on Magnetite Nanoparticles.

ACS Appl Mater Interfaces. 2025-3-5

[10]
Cancer stem cells: advances in knowledge and implications for cancer therapy.

Signal Transduct Target Ther. 2024-7-5

本文引用的文献

[1]
Targeted destruction of cancer stem cells using multifunctional magnetic nanoparticles that enable combined hyperthermia and chemotherapy.

Theranostics. 2020

[2]
Folate-coated, long-circulating and pH-sensitive liposomes enhance doxorubicin antitumor effect in a breast cancer animal model.

Biomed Pharmacother. 2019-8-7

[3]
Meeting the Challenge of Targeting Cancer Stem Cells.

Front Cell Dev Biol. 2019-2-18

[4]
Thermoresponsive Iron Oxide Nanocubes for an Effective Clinical Translation of Magnetic Hyperthermia and Heat-Mediated Chemotherapy.

ACS Appl Mater Interfaces. 2019-2-1

[5]
Cancer stem cell impact on clinical oncology.

World J Stem Cells. 2018-12-26

[6]
Nanosystems Based on Magnetic Nanoparticles and Thermo- or pH-Responsive Polymers: An Update and Future Perspectives.

Acc Chem Res. 2018-5-15

[7]
Investigation into metastatic processes and the therapeutic effects of gemcitabine on human pancreatic cancer using an orthotopic SUIT-2 pancreatic cancer mouse model.

Oncol Lett. 2018-3

[8]
Cancer stem cells revisited.

Nat Med. 2017-10-6

[9]
Targeting therapy-resistant cancer stem cells by hyperthermia.

Int J Hyperthermia. 2017-6

[10]
Targeting Cancer Stem Cells with Natural Killer Cell Immunotherapy.

Expert Opin Biol Ther. 2017-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索